5 research outputs found
Patiromer induces rapid and sustained potassium lowering in patients with chronic kidney disease and hyperkalemia
Patients with chronic kidney disease (CKD) have a high risk of hyperkalemia, which increases mortality and can lead to renin–angiotensin–aldosterone system inhibitor (RAASi) dose reduction or discontinuation. Patiromer, a nonabsorbed potassium binder, has been shown to normalize serum potassium in patients with CKD and hyperkalemia on RAASi. Here, patiromer's onset of action was determined in patients with CKD and hyperkalemia taking at least one RAASi. After a 3-day potassium- and sodium-restricted diet in an inpatient research unit, those with sustained hyperkalemia (serum potassium 5.5 – under 6.5 mEq/l) received patiromer 8.4 g/dose with morning and evening meals for a total of four doses. Serum potassium was assessed at baseline (0 h), 4 h postdose, then every 2–4 h to 48 h, at 58 h, and during outpatient follow-up. Mean baseline serum potassium was 5.93 mEq/l and was significantly reduced by 7 h after the first dose and at all subsequent times through 48 h. Significantly, mean serum potassium under 5.5 mEq/l was achieved within 20 h. At 48 h (14 h after last dose), there was a significant mean reduction of 0.75 mEq/l. Serum potassium did not increase before the next dose or for 24 h after the last dose. Patiromer was well tolerated, without serious adverse events and no withdrawals. The most common gastrointestinal adverse event was mild constipation in two patients. No hypokalemia (serum potassium under 3.5 mEq/l) was observed. Thus, patiromer induced an early and sustained reduction in serum potassium and was well tolerated in patients with CKD and sustained hyperkalemia on RAASis
The Dynamics of Brane-World Cosmological Models
Brane-world cosmology is motivated by recent developments in string/M-theory
and offers a new perspective on the hierarchy problem. In the brane-world
scenario, our Universe is a four-dimensional subspace or {\em brane} embedded
in a higher-dimensional {\em bulk} spacetime. Ordinary matter fields are
confined to the brane while the gravitational field can also propagate in the
bulk, leading to modifications of Einstein's theory of general relativity at
high energies. In particular, the Randall-Sundrum-type models are
self-consistent and simple and allow for an investigation of the essential
non-linear gravitational dynamics. The governing field equations induced on the
brane differ from the general relativistic equations in that there are nonlocal
effects from the free gravitational field in the bulk, transmitted via the
projection of the bulk Weyl tensor, and the local quadratic energy-momentum
corrections, which are significant in the high-energy regime close to the
initial singularity. In this review we discuss the asymptotic dynamical
evolution of spatially homogeneous brane-world cosmological models containing
both a perfect fluid and a scalar field close to the initial singularity. Using
dynamical systems techniques it is found that, for models with a physically
relevant equation of state, an isotropic singularity is a past-attractor in all
orthogonal spatially homogeneous models (including Bianchi type IX models). In
addition, we describe the dynamics in a class of inhomogeneous brane-world
models, and show that these models also have an isotropic initial singularity.
These results provide support for the conjecture that typically the initial
cosmological singularity is isotropic in brane-world cosmology.Comment: Einstein Centennial Review Article: to appear in CJ