7 research outputs found
Control of convection by dfferent buoyancy forces
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.Thermal convection in vertical concentric cylinders under the influence of di erent buoyancy force fields is the focus
of the experimental project ’CiC’(Convection in Cylinders). The objectives are to investigate thermal convective flow in natural gravity with axial buoyancy and in micro-gravity environment of a parabolic flight with radial buoyancy, and additionally also the superposition of both buoyancy force fields. The radial buoyancy is forced by the dielectrophoretic effect due to applying a high-voltage potential Vapp between the two cylinders. The experiment contains two separately fully automated experiment cells, which differ only in their radius ratio η = b/a. The convective flow is observed with tracer particles and laser light sheet illumination. For the case of natural convection, there exists a stable single convective cell over the whole Rayleigh number domain with Ra ~ ΔT with increasing the temperature difference between the inner and outer cylindrical boundaries. For the case of a pure dielectrophoretic driven convection in micro-gravity environment, stratification effects are described with RaE ~ Vapp with increasing the high voltage potential. The superposition of both buoyancy forces indicates the disturbance of the single convective cell and therewith the onset of instabilities at very low Ra for the smaller η. The presented results demonstrate that the dielectrophoretic effect can be used for flow control and enhancement of heat transfer applications in space as well as on Earth.The “Convection in Cylinders (CiC)” project is funded by the German Aerospace Center DLR within the “GeoFlow” project (grant no. 50 WM 0122 and 50 WM 0822). The authors would also like to thank ESA (grant no. AO-99-049) for funding “GeoFlow” and the “GeoFlow” Topical Team (grant no. 18950/05/NL/VJ)
Parabolic flight experiment "Convection in a Cylinder" – Convection patterns in varying buoyancy forces
International audienc
Expected, sensed, and desired: A framework for designing sensing-based interaction
Movements of interfaces can be analyzed in terms of whether they are expected, sensed, and desired. Expected movements are those that users naturally perform; sensed are those that can be measured by a computer; and desired movements are those that are required by a given application. We show how a systematic comparison of expected, sensed, and desired movements, especially with regard to how they do not precisely overlap, can reveal potential problems with an interface and also inspire new features. We describe how this approach has been applied to the design of three interfaces: pointing flashlights at walls and posters in order to play sounds; the Augurscope II, a mobile augmented reality interface for outdoors; and the Drift Table, an item of furniture that uses load sensing to control the display of aerial photographs. We propose that this approach can help to build a bridge between the analytic and inspirational approaches to design and can help designers meet the challenges raised by a diversification of sensing technologies and interface forms, increased mobility, and an emerging focus on technologies for everyday life