165 research outputs found
Observed mode shape effects on the vortex-induced vibration of bending dominated flexible cylinders simply supported at both ends
The effect of varying the structural mode excitation on bending-dominated flexible cylinders undergoing vortex-induced vibrations was investigated. The response of the bending-dominated cylinders was compared with the response of a tension-dominated cylinder using multivariate analysis techniques. Experiments were conducted in a recirculating flow channel with a uniform free stream with Reynolds numbers between 650 and 5500. Three bending-dominated cylinders were tested with varying stiffness in the cross-flow and in-line directions of the cylinder in order to produce varying structural mode shapes associated with a fixed 2:1 (in-line:cross-flow) natural frequency ratio. A fourth cylinder with natural frequency characteristics determined through applied axial tension was also tested for comparison. The spanwise in-line and cross-flow responses of the flexible cylinders were measured through motion tracking with high-speed cameras. Global smooth-orthogonal decomposition was applied to the spatio-temporal response for empirical mode identification. The experimental observations show that for excitation of low mode numbers, the cylinder is unlikely to oscillate with an even mode shape in the in-line direction due to symmetric drag loading, even when the system is tuned to have an even mode at the expected frequency of vortex shedding. In addition, no mode shape changes were observed in the in-line direction unless a mode change occurs in the cross-flow direction, implying that the in-line response is a forced response dependent on the cross-flow response. The results confirm observations from previous field and laboratory experiments, while demonstrating how structural mode shape can affect vortex-induced vibrations
Coupled Inline-Cross Flow VIV Hydrodynamic Coefficients Database
Vortex Induced Vibrations (VIV) cause major fatigue damage to long slender bodies and have been extensively studied in the past decades. While most of the past research focused on the cross flow direction, it was recently shown that the inline motion in the direction of the flow has a major impact on the fatigue life damage due to its higher frequency (second harmonic) and more importantly, its coupling with the crossflow motion, which triggers a third harmonic stress component in the cross flow direction. In this paper, the coupled inline-crossflow VIV problem is addressed from semiempirical modeling of fluid forces. Extensive fine grid forced inline-crossflow VIV experiments were designed and carried out in the MIT towing tank. An inline-crossflow VIV hydrodynamics coefficients database was newly constructed using the experimental results and it is expected to be useful for other semi empirical programs predicting coupled inlinecrossflow VIV in the field. Several key hydrodynamic coefficients in the database, including lift force coefficients, drag force coefficients and added mass coefficients, were systematically analyzed. The coefficients in the crossflow and the inline directions were found to have strong dependency on the phase between the inline and crossflow motions.BP-MIT Major Program
Hybrid Lattice-Boltzmann-Potential Flow Simulations of Turbulent Flow around Submerged Structures
We report on the development and validation of a 3D hybrid Lattice Boltzmann Model (LBM), with Large Eddy Simulation (LES), to simulate the interactions of incompressible turbulent flows with ocean structures. The LBM is based on a perturbation method, in which the velocity and pressure are expressed as the sum of an inviscid flow and a viscous perturbation. The far- to near-field flow is assumed to be inviscid and represented by potential flow theory, which can be efficiently modeled with a Boundary Element Method (BEM). The near-field perturbation flow around structures is modeled by the Navier–Stokes (NS) equations, based on a Lattice Boltzmann Method (LBM) with a Large Eddy Simulation (LES) of the turbulence. In the paper, we present the hybrid model formulation, in which a modified LBM collision operator is introduced to simulate the viscous perturbation flow, resulting in a novel perturbation LBM (pLBM) approach. The pLBM is then extended for the simulation of turbulence using the LES and a wall model to represent the viscous/turbulent sub-layer near solid boundaries. The hybrid model is first validated by simulating turbulent flows over a flat plate, for moderate to large Reynolds number values, Re ∈ [3.7×104;1.2×106]; the plate friction coefficient and near-field turbulence properties computed with the model are found to agree well with both experiments and direct NS simulations. We then simulate the flow past a NACA-0012 foil using a regular LBM-LES and the new hybrid pLBM-LES models with the wall model, for Re = 1.44 x 106. A good agreement is found for the computed lift and drag forces, and pressure distribution on the foil, with experiments and results of other numerical methods. Results obtained with the pLBM model are either nearly identical or slightly improved, relative to those of the standard LBM, but are obtained in a significantly smaller computational domain and hence at a much reduced computational cost, thus demonstrating the benefits of the new hybrid approach
Mood and neural responses to social rejection do not seem to be altered in resilient adolescents with a history of adversity.
Childhood adversity (CA) increases the risk of subsequent mental health problems. Adolescent social support (from family and/or friends) reduces the risk of mental health problems after CA. However, the mechanisms of this effect remain unclear, and we speculate that they are manifested on neurodevelopmental levels. Therefore, we investigated whether family and/or friendship support at ages 14 and 17 function as intermediate variables for the relationship between CA before age 11 and affective or neural responses to social rejection feedback at age 18. We studied 55 adolescents with normative mental health at age 18 (26 with CA and therefore considered "resilient"), from a longitudinal cohort. Participants underwent a Social Feedback Task in the magnetic resonance imaging scanner. Social rejection feedback activated the dorsal anterior cingulate cortex and the left anterior insula. CA did not predict affective or neural responses to social rejection at age 18. Yet, CA predicted better friendships at age 14 and age 18, when adolescents with and without CA had comparable mood levels. Thus, adolescents with CA and normative mood levels have more adolescent friendship support and seem to have normal mood and neural responses to social rejection.This work was supported by grants from Friends of Peterhouse Medical Fund Cambridge (RG 51114), the Wellcome Trust (RG 074296), and the UK Medical Research Council (MC US A060 0019). JF is supported by the Medical Research Council Doctoral Training/Sackler Fund and the Pinsent Darwin Fund. JS is supported by the UK Medical Research Council (MC US A060 0019). ADA is supported by the Aker Scholarship. SS is supported by the Wellcome Trust (209127/Z/17/Z). IMG is funded by a Wellcome Trust Strategic Award and declares consulting to Lundbeck. ALvH is supported by the Royal Society (DH15017 & RGF\EA\180029 & RGF\RI\180064), and MQ (MQBFC/2). Funders of the authors played no role in the study conduction, analysis performance, or the reporting of the study
Reproducibility of thoracic kyphosis measurements in patients with adolescent idiopathic scoliosis
BACKGROUND: Current surgical treatment for adolescent idiopathic scoliosis (AIS) involves correction in both the coronal and sagittal plane, and thorough assessment of these parameters is essential for evaluation of surgical results. However, various definitions of thoracic kyphosis (TK) have been proposed, and the intra- and inter-rater reproducibility of these measures has not been determined. As such, the purpose of the current study was to determine the intra- and inter-rater reproducibility of several TK measurements used in the assessment of AIS. METHODS: Twenty patients (90% females) surgically treated for AIS with alternate-level pedicle screw fixation were included in the study. Three raters independently evaluated pre- and postoperative standing lateral plain radiographs. For each radiograph, several definitions of TK were measured as well as L1–S1 and nonfixed lumbar lordosis. All variables were measured twice 14 days apart, and a mixed effects model was used to determine the repeatability coefficient (RC), which is a measure of the agreement between repeated measurements. Also, the intra- and inter-rater intra-class correlation coefficient (ICC) was determined as a measure of reliability. RESULTS: Preoperative median Cobb angle was 58° (range 41°–86°), and median surgical curve correction was 68% (range 49–87%). Overall intra-rater RC was highest for T2–T12 and nonfixed TK (11°) and lowest for T4–T12 and T5–T12 (8°). Inter-rater RC was highest for T1–T12, T1-nonfixed, and nonfixed TK (13°) and lowest for T5–T12 (9°). Agreement varied substantially between pre- and postoperative radiographs. Inter-rater ICC was highest for T4–T12 (0.92; 95% CI 0.88–0.95) and T5–T12 (0.92; 95% CI 0.88–0.95) and lowest for T1-nonfixed (0.80; 95% CI 0.72–0.88). CONCLUSIONS: Considerable variation for all TK measurements was noted. Intra- and inter-rater reproducibility was best for T4–T12 and T5–T12. Future studies should consider adopting a relevant minimum difference as a limit for true change in TK. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13013-017-0112-4) contains supplementary material, which is available to authorized users
Is democracy an option for the realist?
In Democracy for Realists, Christopher Achen and Larry Bartels argue that the depressingly well-established fact that people are woefully ignorant on politically relevant matters renders democratic ideals mere “fairy tales.” However, this iconoclasm stands in deep tension with the prescriptions they themselves end up offer-ing towards the end of the book, which coincide to a surprising extent with those that have been offered by democrats for decades. This is a problem because, if we take seriously the type of data that Achen and Bartels rely on (and add to)—data that should make us realists in the sense of the book’s title—it is not clear that democracy in any recognizable sense remains an option for the realist
Expanding Economic Opportunity for More Americans: Bipartisan Policies to Increase Work, Wages, and Skills
Many workers today find themselves lacking the skills and training necessary to thrive in the modern economy. Most low- and middle-income workers have not seen meaningful wage increases in many years. Millions of men and women are missing from the workforce altogether. These challenges stem from profound shifts in the American economy and necessitate a dedicated policy response.Over the course of the past year, the Aspen Economic Strategy Group collected policy ideas to address the barriers to broad-based economic opportunity and identified concrete proposals with bipartisan appeal. These proposals are presented here
A Flexible Approach for Highly Multiplexed Candidate Gene Targeted Resequencing
We have developed an integrated strategy for targeted resequencing and analysis of gene subsets from the human exome for variants. Our capture technology is geared towards resequencing gene subsets substantially larger than can be done efficiently with simplex or multiplex PCR but smaller in scale than exome sequencing. We describe all the steps from the initial capture assay to single nucleotide variant (SNV) discovery. The capture methodology uses in-solution 80-mer oligonucleotides. To provide optimal flexibility in choosing human gene targets, we designed an in silico set of oligonucleotides, the Human OligoExome, that covers the gene exons annotated by the Consensus Coding Sequencing Project (CCDS). This resource is openly available as an Internet accessible database where one can download capture oligonucleotides sequences for any CCDS gene and design custom capture assays. Using this resource, we demonstrated the flexibility of this assay by custom designing capture assays ranging from 10 to over 100 gene targets with total capture sizes from over 100 Kilobases to nearly one Megabase. We established a method to reduce capture variability and incorporated indexing schemes to increase sample throughput. Our approach has multiple applications that include but are not limited to population targeted resequencing studies of specific gene subsets, validation of variants discovered in whole genome sequencing surveys and possible diagnostic analysis of disease gene subsets. We also present a cost analysis demonstrating its cost-effectiveness for large population studies
Evaluating the Suitability of Using Rat Models for Preclinical Efficacy and Side Effects with Inhaled Corticosteroids Nanosuspension Formulations
Inhaled corticosteroids (ICS) are often prescribed as first-line therapy for patients with asthma Despite their efficacy and improved safety profile compared with oral corticosteroids, the potential for systemic side effects continues to cause concern. In order to reduce the potential for systemic side effects, the pharmaceutical industry has begun efforts to generate new drugs with pulmonary-targeted topical efficacy. One of the major challenges of this approach is to differentiate both efficacy and side effects (pulmonary vs. systemic) in a preclinical animal model. In this study, fluticasone and ciclesonide were used as tool compounds to explore the possibility of demonstrating both efficacy and side effects in a rat model using pulmonary delivery via intratracheal (IT) instillation with nanosuspension formulations. The inhibition of neutrophil infiltration into bronchoalveolar lavage fluid (BALF) and cytokine (TNFα) production were utilized to assess pulmonary efficacy, while adrenal and thymus involution as well as plasma corticosterone suppression was measured to assess systemic side effects. Based on neutrophil infiltration and cytokine production data, the ED50s for ciclesonide and fluticasone were calculated to be 0.1 and 0.03 mg, respectively. At the ED50, the average adrenal involution was 7.6 ± 5.3% for ciclesonide versus 16.6 ± 5.1% for fluticasone, while the average thymus involution was 41.0 ± 4.3% for ciclesonide versus 59.5 ± 5.8% for fluticasone. However, the differentiation became less significant when the dose was pushed to the EDmax (0.3 mg for ciclesonide, 0.1 mg for fluticasone). Overall, the efficacy and side effect profiles of the two compounds exhibited differentiation at low to mid doses (0.03–0.1 mg ciclesonide, 0.01–0.03 mg fluticasone), while this differentiation diminished at the maximum efficacious dose (0.3 mg ciclesonide, 0.1 mg fluticasone), likely due to overdosing in this model. We conclude that the rat LPS model using IT administration of nanosuspensions of ICS is a useful tool to demonstrate pulmonary-targeted efficacy and to differentiate the side effects. However, it is only suitable at sub-maximum efficacious levels
Evaluation of Aerosol Delivery of Nanosuspension for Pre-clinical Pulmonary Drug Delivery
Asthma and chronic obstructive pulmonary disease (COPD) are pulmonary diseases that are characterized by inflammatory cell infiltration, cytokine production, and airway hyper-reactivity. Most of the effector cells responsible for these pathologies reside in the lungs. One of the most direct ways to deliver drugs to the target cells is via the trachea. In a pre-clinical setting, this can be achieved via intratracheal (IT), intranasal (IN), or aerosol delivery in the desired animal model. In this study, we pioneered the aerosol delivery of a nanosuspension formulation in a rodent model. The efficiency of different dosing techniques and formulations to target the lungs were compared, and fluticasone was used as the model compound. For the aerosol particle size determination, a ten-stage cascade impactor was used. The mass median aerodynamic diameter (MMAD) was calculated based on the percent cumulative accumulation at each stage. Formulations with different particle size of fluticasone were made for evaluation. The compatibility of regular fluticasone suspension and nanosuspension for aerosol delivery was also investigated. The in vivo studies were conducted on mice with optimized setting. It was found that the aerosol delivery of fluticasone with nanosuspension was as efficient as intranasal (IN) dosing, and was able to achieve dose dependent lung deposition
- …