3 research outputs found

    A 2200-year record of Andean Condor diet and nest site usage reflects natural and anthropogenic stressors

    Get PDF
    Understanding how animals respond to large-scale environmental changes is difficult to achieve because monitoring data are rarely available for more than the past few decades, if at all. Here, we demonstrate how a variety of palaeoecological proxies (e.g. isotopes, geochemistry and DNA) from an Andean Condor (Vultur gryphus) guano deposit from Argentina can be used to explore breeding site fidelity and the impacts of environmental changes on avian behaviour. We found that condors used the nesting site since at least approximately 2200 years ago, with an approximately 1000-year nesting frequency slowdown from ca 1650 to 650 years before the present (yr BP). We provide evidence that the nesting slowdown coincided with a period of increased volcanic activity in the nearby Southern Volcanic Zone, which resulted in decreased availability of carrion and deterred scavenging birds. After returning to the nest site ca 650 yr BP, condor diet shifted from the carrion of native species and beached marine animals to the carrion of livestock (e.g. sheep and cattle) and exotic herbivores (e.g. red deer and European hare) introduced by European settlers. Currently, Andean Condors have elevated lead concentrations in their guano compared to the past, which is associated with human persecution linked to the shift in diet.Fil: Duda, Matthew P.. Queen's University; CanadáFil: Grooms, Christopher. Queen's University; CanadáFil: Sympson, Lorenzo. Sociedad Naturalista Andino Patagonica; ArgentinaFil: Blais, Jules M.. University of Ottawa; CanadáFil: Dagodzo, Daniel. University of Ottawa; CanadáFil: Feng, Wenxi. Queen's University; CanadáFil: Hayward, Kristen M.. Queen's University; CanadáFil: Julius, Matthew L.. St. Cloud State University; Estados UnidosFil: Kimpe, Linda E.. University of Ottawa; CanadáFil: Lambertucci, Sergio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Layton Matthews, Daniel. Queen's University; CanadáFil: Lougheed, Stephen. Queen's University; CanadáFil: Massaferro, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Michelutti, Neal. Queen's University; CanadáFil: Pufahl, Peir K.. Queen's University; CanadáFil: Vuletich, April. Queen's University; CanadáFil: Smol, John P.. Queen's University; Canad

    Can Chitin and Chitosan Replace the Lichen Evernia prunastri for Environmental Biomonitoring of Cu and Zn Air Contamination?

    No full text
    This study compared the ability of the lichen Evernia prunastri, chitin and chitosan to take up Cu2+ and Zn2+. It was hypothesized that chitin and chitosan have an accumulation capacity comparable to the lichen, so that these biopolymers could replace the use of E. prunastri for effective biomonitoring of Cu and Zn air pollution. Samples of the lichen E. prunastri, as well as chitin (from shrimps) and chitosan (from crabs), were incubated with Cu and Zn solutions at concentrations of 0 (control), 10, 25, 50, 75, and 100 µM and analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Metal concentrations accumulated by lichen, chitin and chitosan samples were strongly and linearly correlated with the concentrations in the treatment solutions. The lichen always showed significantly higher accumulation values compared to chitin and chitosan, which showed similar accumulation features. The outcomes of this study confirmed the great effectiveness of the lichen Evernia prunastri for environmental biomonitoring and showed that chitin and chitosan have a lower accumulation capacity, thus suggesting that although these biopolymers have the potential for replacing E. prunastri in polluted areas, their suitability may be limited in areas with intermediate or low pollution levels

    Duda et al. 2022_supplementary material.docx from An approximately 2200-year record of andean condor diet and nest site usage reflects natural and anthropogenic stressors

    No full text
    Understanding how animals respond to large-scale environmental changes is difficult to assess because monitoring data are rarely available for more than the last few decades, if at all. Here, we demonstrate how a variety of paleoecological proxies (e.g. isotopes, geochemistry and DNA) from an Andean Condor (Vultur gryphus) guano deposit from Argentina can be used to explore breeding site fidelity and the impacts of environmental changes on avian behaviour. We found that condors used the nesting site since at least approximately 2200 years ago, with an approximately 1000-year nesting frequency slowdown from ca. 1650 to 650 BP. We provide evidence that the nesting slowdown may have been caused by a period of increased volcanic activity in the nearby Southern Volcanic Zone, which resulted in decreased availability of carrion and deterred scavenging birds. After returning to the nest site ca. 650 BP, condor diet shifted from the carrion of native species and beached marine animals to the carrion of livestock (e.g. sheep and cattle) and exotic herbivores (e.g. red deer and European hare) introduced by European settlers. Currently, Andean Condors have elevated lead concentrations in their guano compared to the past, which is associated with human persecution linked to the shift in diet
    corecore