9 research outputs found

    The combination of intestinal alkaline phosphatase treatment with moderate physical activity alleviates the severity of experimental colitis in obese mice via modulation of gut microbiota, attenuation of proinflammatory cytokines, oxidative stress biomarkers and DNA oxidative damage in colonic mucosa

    No full text
    Inflammatory bowel diseases (IBD) are commonly considered as Crohn’s disease and ulcerative colitis, but the possibility that the alterations in gut microbiota and oxidative stress may affect the course of experimental colitis in obese physically exercising mice treated with the intestinal alkaline phosphatase (IAP) has been little elucidated. Mice fed a high-fat-diet (HFD) or normal diet (ND) for 14 weeks were randomly assigned to exercise on spinning wheels (SW) for 7 weeks and treated with IAP followed by intrarectal administration of TNBS. The disease activity index (DAI), grip muscle strength test, oxidative stress biomarkers (MDA, SOD, GSH), DNA damage (8-OHdG), the plasma levels of cytokines IL-2, IL-6, IL-10, IL-12p70, IL-17a, TNF-α, MCP-1 and leptin were assessed, and the stool composition of the intestinal microbiota was determined by next generation sequencing (NGS). The TNBS-induced colitis was worsened in obese sedentary mice as manifested by severe colonic damage, an increase in DAI, oxidative stress biomarkers, DNA damage and decreased muscle strength. The longer running distance and weight loss was observed in mice given IAP or subjected to IAP + SW compared to sedentary ones. Less heterogeneous microbial composition was noticed in sedentary obese colitis mice and this effect disappeared in IAP + SW mice. Absence of Alistipes, lower proportion of Turicibacter, Proteobacteria and Faecalibacterium, an increase in Firmicutes and Clostridium, a decrease in oxidative stress biomarkers, 8-OHdG content and proinflammatory cytokines were observed in IAP + SW mice. IAP supplementation in combination with moderate physical activity attenuates the severity of murine colitis complicated by obesity through a mechanism involving the downregulation of the intestinal cytokine/chemokine network and oxidative stress, the modulation of the gut microbiota and an improvement of muscle strength

    The Two-Track Investigation of Fibronectin Binding Protein A of <i>Staphylococcus aureus</i> from Bovine Mastitis as a Potential Candidate for Immunodiagnosis: A Pilot Study

    No full text
    Bovine mastitis is the most common disease affecting dairy cattle worldwide and it generates substantial losses for cattle breeders. One of the most common pathogens identified in infected milk samples is Staphylococcus aureus. Currently, there is no fast test for recognizing bacteria species on the market. The aim of this study was to bioinformatically and laboratory detect and characterize the fibronectin binding protein A (FnBPA) of S. aureus (SA) in milk samples obtained from cows diagnosed with mastitis. More than 90,000,000 amino acid sequences were subjected to bioinformatic detection in the search for a potential biomarker for bovine SA. The analysis of FnBPA included the detection of signal peptides and nonclassical proteins, antigenicity, and the prediction of epitopes. To confirm the presence of the fnbA gene in four SA isolates, amplification with specific primers was performed. FnBPA was detected by immunoblotting. The immunoreactivity and selectivity were performed with monoclonal anti-FnBPA antibodies and SA-negative serum. The bioinformatic analysis showed that FnBPA is a surface, conservative, immunoreactive, and species-specific protein with antigenic potential. Its presence was confirmed in all of the SA isolates we studied. Immunoblotting proved its immunoreactivity and specificity. Thus, it can be considered a potential biomarker in mastitis immunodiagnostics

    Hydrogen Sulfide-Releasing Indomethacin-Derivative (ATB-344) Prevents the Development of Oxidative Gastric Mucosal Injuries

    No full text
    Hydrogen sulfide (H2S) emerged recently as an anti-oxidative signaling molecule that contributes to gastrointestinal (GI) mucosal defense and repair. Indomethacin belongs to the class of non-steroidal anti-inflammatory drugs (NSAIDs) and is used as an effective intervention in the treatment of gout- or osteoarthritis-related inflammation. However, its clinical use is strongly limited since indomethacin inhibits gastric mucosal prostaglandin (PG) biosynthesis, predisposing to or even inducing ulcerogenesis. The H2S moiety was shown to decrease the GI toxicity of some NSAIDs. However, the GI safety and anti-oxidative effect of a novel H2S-releasing indomethacin derivative (ATB-344) remain unexplored. Thus, we aimed here to compare the impact of ATB-344 and classic indomethacin on gastric mucosal integrity and their ability to counteract the development of oxidative gastric mucosal injuries. Wistar rats were pretreated intragastrically (i.g.) with vehicle, ATB-344 (7–28 mg/kg i.g.), or indomethacin (5–20 mg/kg i.g.). Next, animals were exposed to microsurgical gastric ischemia-reperfusion (I/R). Gastric damage was assessed micro- and macroscopically. The volatile H2S level was assessed in the gastric mucosa using the modified methylene blue method. Serum and gastric mucosal PGE2 and 8-hydroxyguanozine (8-OHG) concentrations were evaluated by ELISA. Molecular alterations for gastric mucosal barrier-specific targets such as cyclooxygenase-1 (COX)-1, COX-2, heme oxygenase-1 (HMOX)-1, HMOX-2, superoxide dismutase-1 (SOD)-1, SOD-2, hypoxia inducible factor (HIF)-1α, xanthine oxidase (XDH), suppressor of cytokine signaling 3 (SOCS3), CCAAT enhancer binding protein (C/EBP), annexin A1 (ANXA1), interleukin 1 beta (IL-1β), interleukin 1 receptor type I (IL-1R1), interleukin 1 receptor type II (IL-1R2), inducible nitric oxide synthase (iNOS), tumor necrosis factor receptor 2 (TNFR2), or H2S-producing enzymes, cystathionine γ-lyase (CTH), cystathionine β-synthase (CBS), or 3-mercaptopyruvate sulfur transferase (MPST), were assessed at the mRNA level by real-time PCR. ATB-344 (7 mg/kg i.g.) reduced the area of gastric I/R injuries in contrast to an equimolar dose of indomethacin. ATB-344 increased gastric H2S production, did not affect gastric mucosal PGE2 content, prevented RNA oxidation, and maintained or enhanced the expression of oxidation-sensitive HMOX-1 and SOD-2 in line with decreased IL-1β and XDH. We conclude that due to the H2S-releasing ability, i.g., treatment with ATB-344 not only exerts dose-dependent GI safety but even enhances gastric mucosal barrier capacity to counteract acute oxidative injury development when applied at a low dose of 7 mg/kg, in contrast to classic indomethacin. ATB-344 (7 mg/kg) inhibited COX activity on a systemic level but did not affect cytoprotective PGE2 content in the gastric mucosa and, as a result, evoked gastroprotection against oxidative damage

    The mitochondria-targeted sulfide delivery molecule attenuates drugs-induced gastropathy. Involvement of heme oxygenase pathway.

    Get PDF
    Hydrogen sulfide (H2S) signaling and H2S-prodrugs maintain redox balance in gastrointestinal (GI) tract. Predominant effect of any H2S-donor is mitochondrial. Non-targeted H2S-moieties were shown to decrease the non-steroidal anti-inflammatory drugs (NSAIDs)-induced gastrotoxicity but in high doses. However, direct, controlled delivery of H2S to gastric mucosal mitochondria as a molecular target improving NSAIDs-pharmacology remains overlooked.Thus, we treated Wistar rats, i.g. with vehicle, mitochondria-targeted H2S-releasing AP39 (0.004–0.5 mg/kg), AP219 (0.02 mg/kg) as structural control without H2S-releasing ability, or AP39 + SnPP (10 mg/kg) as a heme oxygenase (HMOX) inhibitor. Next, animals were administered i.g. with acetylsalicylic acid (ASA, 125 mg/kg) as NSAIDs representative or comparatively with 75% ethanol to induce translational hemorrhagic or necrotic gastric lesions, that were assessed micro-/macroscopically. Activity of mitochondrial complex IV/V, and DNA oxidation were assessed biochemically. Gastric mucosal/serum content of IL-1β, IL-10, TNF-α, TGF-β1/2, ARG1, GST-α, or phosphorylation of mTOR, NF-κB, ERK, Akt, JNK, STAT3/5 were evaluated by microbeads-fluorescent xMAP®-assay; gastric mucosal mRNA level of HMOX-1/2, COX-1/2, SOD-1/2 by real-time PCR.AP39 (but not AP219) dose-dependently (0.02 and 0.1 mg/kg) diminished NSAID- (and ethanol)-induced gastric lesions and DNA oxidation, restoring mitochondrial complexes activity, ARG1, GST-α protein levels and increasing HMOX-1 and SOD-2 expression. AP39 decreased proteins levels or phosphorylation of gastric mucosal inflammation/oxidation-sensitive markers and restored mTOR phosphorylation. Pharmacological inhibition of HMOX-1 attenuated AP39-gastroprotection.We showed that mitochondria-targeted H2S released from very low i.g. doses of AP39 improved gastric mucosal capacity to cope with NSAIDs-induced mitochondrial dysfunction and redox imbalance, mechanistically requiring the activity of HMOX-1
    corecore