76 research outputs found

    Vertical distributions of soil microbial biomass carbon: a global dataset

    Get PDF
    Soil microbial biomass carbon (SMBC) is important in regulating soil organic carbon (SOC) dynamics along soil profiles by mediating the decomposition and formation of SOC. The dataset (VDMBC) is about the vertical distributions of SOC, SMBC, and soil microbial quotient (SMQ = SMBC/SOC) and their relations to environmental factors across five continents. Data were collected from literature, with a total of 289 soil profiles and 1040 observations in different soil layers compiled. The associated environment data collectd include climate, ecosystem types, and edaphic factors. We developed this dataset by searching the Web of Sciene and the China National Knowledge Infrastructure from the year of 1970 to 2019. All the data in this dataset met two creteria: 1) there were at least three mineral soil layers along a soil profile, and 2) SMBC was measured using the fumigation extraction method. The data in tables and texts were obtained from literature directly, and the data in figures were extracted by using the GetData Graph digitizer software version 2.25. When climate and soil properties were not available from publications, we obtainted the data from the World Weather Information Service (https://worldweather.wmo.int/en/home.html) and SoilGrids at a spatial resolution of 250 meters (version 0.5.3, https://soilgrids.org). The units of all the variables were converted to the standard international units or commonly used ones and the values were transformed correspondingly. For example, the value of soil organic matter (SOM) was converted to SOC by using the equation (SOC = SOM × 0.58). This dataset can be used in predicting global SOC changes along soil profiles by using the multi-layer soil carbon models. It can also be used to analyse how soil microbial biomass changes with plant roots as well as the composition, structure, and functions of soil microbial communities along soil profiles at large spatial scales. This dataset offers opportunities to improve our prediction of SOC dynamics under global changes and to advance our understanding of the environmental controls

    Al-induced proteomics changes in tomato plants over-expressing a glyoxalase I gene

    Get PDF
    Glyoxalase I (Gly I) is the first enzyme in the glutathionine-dependent glyoxalase pathway for detoxification of methylglyoxal (MG) under stress conditions. Transgenic tomato ‘Money Maker’ plants overexpressing tomato SlGlyI gene (tomato unigene accession SGN-U582631/Solyc09g082120.3.1) were generated and homozygous lines were obtained after four generations of self-pollination. In this study, SlGlyI-overepxressing line (GlyI), wild type (WT, negative control) and plants transformed with empty vector (ECtr, positive control), were subjected to Al-treatment by growing in Magnavaca’s nutrient solution (pH 4.5) supplemented with 20 µM Al3+ ion activity. After 30 days of treatments, the fresh and dry weight of shoots and roots of plants from Al-treated conditions decreased significantly compared to the non-treated conditions for all the three lines. When compared across the three lines, root fresh and dry weight of GlyI was significant higher than WT and ECtr, whereas there was no difference in shoot tissues. The basal 5 mm root-tips of GlyI plants expressed a significantly higher level of glyoxalase activity under both non-Al-treated and Al-treated conditions compared to the two control lines. Under Al-treated condition, there was a significant increase in MG content in ECtr and WT lines, but not in GlyI line. Quantitative proteomics analysis using tandem mass tags mass spectrometry identified 4080 quantifiable proteins and 201 Al-induced differentially expressed proteins (DEPs) in root-tip tissues from GlyI, and 4273 proteins and 230 DEPs from ECtr. The Al-down-regulated DEPs were classified into molecular pathways of gene transcription, RNA splicing and protein biosynthesis in both GlyI and ECtr lines. The Al-induced DEPs in GlyI associated with tolerance to Al3+ and MG toxicity are involved in callose degradation, cell wall components (xylan acetylation and pectin degradation), oxidative stress (antioxidants) and turnover of Al-damaged epidermal cells, repair of damaged DNA, epigenetics, gene transcription, and protein translation. A protein–protein association network was constructed to aid the selection of proteins in the same pathway but differentially regulated in GlyI or ECtr lines. Proteomics data are available via ProteomeXchange with identifiers PXD009456 under project title ‘25Dec2017_Suping_XSexp2_ITAG3.2’ for SlGlyI-overexpressing tomato plants and PXD009848 under project title ‘25Dec2017_Suping_XSexp3_ITAG3.2’ for positive control ECtr line transformed with empty vector

    Endothelial cell-specific deletion of a microRNA accelerates atherosclerosis

    Get PDF
    Background and aims: Chronic vascular endothelial inflammation predisposes to atherosclerosis; however, the cell-autonomous roles for endothelial-expressing microRNAs (miRNAs) are poorly understood in this process. MiR-181b is expressed in several cellular constituents relevant to lesion formation. The aim of this study is to examine the role of genetic deficiency of the miR-181b locus in endothelial cells during atherogenesis. Methods and Results: Using a proprotein convertase subtilisin/kexin type 9 (PCSK9)-induced atherosclerosis mouse model, we demonstrated that endothelial cell (EC)-specific deletion of miR-181a2b2 significantly promoted atherosclerotic lesion formation, cell adhesion molecule expression, and the influx of lesional macrophages in the vessel wall. Yet, endothelium deletion of miR-181a2b2 did not affect body weight, lipid metabolism, anti-inflammatory Ly6Clow or the pro-inflammatory Ly6Cinterm and Ly6Chigh fractions in circulating peripheral blood mononuclear cells (PBMCs), and pro-inflammatory or anti-inflammatory mediators in both bone marrow (BM) and PBMCs. Mechanistically, bulk RNA-seq and gene set enrichment analysis of ECs enriched from the aortic arch intima, as well as single cell RNA-seq from atherosclerotic lesions, revealed that endothelial miR-181a2b2 serves as a critical regulatory hub in controlling endothelial inflammation, cell adhesion, cell cycle, and immune response during atherosclerosis. Conclusions: Our study establishes that deficiency of a miRNA specifically in the vascular endothelium is sufficient to profoundly impact atherogenesis. Endothelial miR-181a2b2 deficiency regulates multiple key pathways related to endothelial inflammation, cell adhesion, cell cycle, and immune response involved in the development of atherosclerosis

    Effect of Ultrasonic-assisted Pretreatment on Hydrolysis and Fermentation of Acorn Starch

    No full text
    Acorn starch was used for ethanol production by separate hydrolysis and fermentation (SHF) in this study. The influence of tannins on hydrolysis and fermentation was investigated using ultrasonic-assisted extraction (UAE) to decrease the amount of tannin before SHF. The tannin was shown to have a negative role in hydrolysis and fermentation, and UAE can improve the two processes. The tannin content of acorn starch decreased from 6.19% to 1.91% with the UAE pretreatment time of 200 min. When the pretreatment time was 120 min, the glucose concentration increased from 78.08 to 98.76 g/L after 24 h of hydrolysis. The highest ethanol concentration was 42.22 g/L, which was obtained from the same pretreated acorn flour fermented for 12 h. However, the maximum ethanol yield was 88.06% of the theoretical yield, while pretreatment time was 80 min. Scanning electron microscope images indicated that protein was separated from the starch granules by UAE, as well as by the molecular weight of starch which decreased significantly based on the results from gel permeation chromatography (GPC) analysis

    Enhanced Ethanol Production with Mixed Lignocellulosic Substrates from Commercial Furfural and Cassava Residues

    No full text
    Simultaneous saccharification and fermentation (SSF) is an attractive process configuration for bio-ethanol production. Further reductions in process cost of SSF are expected with the use of waste agricultural or industrial materials as feedstock. In the current study, two industrial lignocellulosic wastes, cassava residues (CR) and furfural residues (FR), were combined during SSF for ethanol production due to their value-added applications and positive environmental impacts. After CR were liquefied and saccharified, saccharification liquid was added to SSF of FR. The effect of substrate fractions was investigated in terms of ethanol yield, byproduct concentration and the number of yeast cells. Besides, a natural surfactant, Gleditsia saponin, was added to investigate the effect of FR lignin on SSF with 20% substrate concentration. The results showed that increasing the ratio of CR/FR improved the ethanol yield and that the ethanol yield was also increased gradually by increasing the substrate concentration from 6% to 12%. A high ethanol concentration of 36.0 g/L was obtained under the condition of CR:FR = 2:1 with 12% substrate concentration, reaching 71.1% of the theoretical yield. However, Gleditsia saponin did not affect the ethanol yield, indicating the insignificant effect of lignin in SSF with low lignin content in the reaction system

    Comparative Study of Enzymatic Hydrolysis Properties of Pulp Fractions from Waste Paper

    No full text
    As a lignocellulosic material, wastepaper is a potential material for ethanol production. However, little research on the enzymatic hydrolysis of wastepaper pulp has been conducted. In this study, the enzymatic hydrolysis of different waste pulp fractions (R80 represents greater than 80-mesh wastepaper pulp, R80-180 represents the range of 80- to 180-mesh wastepaper pulp, and R180 represents smaller than 180-mesh waste paper pulp) were carried out at 50 °C, pH 4.8, for 96 h, with a substrate concentration of 5% (w/v) and cellulase loading of 18 FPU/g cellulose. In terms of the specific surface area, fiber structure, and surface morphology, R80-180 had the highest affinity to cellulase and therefore the highest glucose yield of 80.33%. R180 had the lowest glucose yield (55.36%) because of its high ash content (21.36%), which reduced the adsorption of cellulase to cellulose. The enzymatic hydrolysis of R80 mixed with R80 or R80-180 was also studied. Results indicated that adding R80-180 increased the glucose yield of R80. The highest glucose yield (82.57%) was obtained when 15% R80-180 was mixed with R80. However, the glucose content decreased when R180 was mixed with R80 because of its high ash content

    Optimization of Maillard Reaction for Flavor Enhancement and Electronic Nose Analysis of Lanmaoa asiatica Enzymatic Hydrolysate Seasoning Oil

    Get PDF
    In this study, the freeze-dried powder of Lanmaoa asiatica enzymatic hydrolysates was used as the main material, and the optimal preparation process of Lanmaoa asiatica seasoning oil was obtained by optimizing the Maillard reaction conditions. The response values of the electronic nose sensor and the sensory evaluation scores were used as evaluation indicators. Single-factorial and orthogonal experiments were used to optimize the preparation process parameters of Lanmaoa asiatica seasoning oil. The results showed that the optimal preparation process was as follows: Mixing the freeze-dried powder of Lanmaoa asiatica enzymatic hydrolysates with corn oil in a ratio of 1:40 (w/w), adding 5% glucose and 3% L-glutamic acid, and conducting the Maillard reaction at 140 ℃ for 40 min. The seasoning oil prepared under these conditions had a rich and harmonious aroma with a unique flavor of Lanmaoa asiatica. Electronic nose analysis identified sulfur compounds, nitrogen oxides, aldehydes, and ketones as the main aroma components. Quality testing showed that the seasoning oil met national standards, containing 3693 kJ/100 g of energy and 99.8 g/100 g of fat

    Bimetallic Single-Atom Catalysts for Electrocatalytic and Photocatalytic Hydrogen Production

    No full text
    Electrocatalytic and photocatalytic hydrogen evolution reactions (HERs) provide a promising approach to clean energy generation. Bimetallic single-atom catalysts have been developed and explored to be advanced catalysts for HER. It is urgent to review and summarize the recent advances in developing bimetallic single-atom HER catalysts. Firstly, the fundamentals of bimetallic single-atom catalysts are presented, highlighting their unique configuration of two isolated metal atoms on their supports and resultant synergistic effects. Secondly, recent advances in bimetallic single-atom catalysts for electrocatalytic HER under acidic/alkaline conditions are then reviewed, including W-Mo, Ru-Bi, Ni-Fe, Co-Ag, and other dual-atom systems on graphene and transition metal dichalcogenides (TMDs) with enhanced HER activity versus monometallic analogs due to geometric and electronic synergies. Then, photocatalytic bimetallic single-atom catalysts on semiconducting carbon nitrides for solar H2 production are also discussed. Finally, an outlook is provided on opportunities and challenges in precisely controlling bimetallic single-atom catalyst synthesis and gaining in-depth mechanistic insights into bimetallic interactions. Further mechanistic and synthetic studies on bimetallic single-atom catalysts will be imperative for developing optimal systems for efficient and sustainable hydrogen production
    • …
    corecore