113 research outputs found

    First Report of Leaf Spot in Fischer's Ragwort Caused by

    Get PDF
    During disease surveys from 2019 to 2021, the authors frequently encountered leaf spot symptoms on Fischer's ragwort plants growing at fields at six locations of Gangwon Province, Korea. The symptoms displayed brown to dark brown, circular or irregular spots on the plant leaves. The disease surveys at the six locations revealed 1โ€“90% of diseased leaves of the plants. Phoma sp. was dominantly isolated from the diseased leaf lesions. Seven single-spore isolates of the fungus were selected and identified as Didymella ligulariae by investigation of their cultural, morphological, and molecular characteristics. Artificial inoculation test to Fischer's ragwort leaves was conducted with three isolates of D. ligulariae. The inoculation test revealed that the tested isolates cause leaf spot symptoms in the plants similar to the natural ones. The fungal pathogen has never been reported to cause leaf spot in Fischer's ragwort. Leaf spot of Fischer's ragwort caused by D. ligulariae is first reported in this study

    Exosomes from Human Adipose Tissue-Derived Mesenchymal Stem Cells Promote Epidermal Barrier Repair by Inducing de Novo Synthesis of Ceramides in Atopic Dermatitis.

    Get PDF
    Atopic dermatitis (AD) is a multifactorial, heterogeneous disease associated with epidermal barrier disruption and intense systemic inflammation. Previously, we showed that exosomes derived from human adipose tissue-derived mesenchymal stem cells (ASC-exosomes) attenuate AD-like symptoms by reducing multiple inflammatory cytokine levels. Here, we investigated ASC-exosomes' effects on skin barrier restoration by analyzing protein and lipid contents. We found that subcutaneous injection of ASC-exosomes in an oxazolone-induced dermatitis model remarkably reduced trans-epidermal water loss, while enhancing stratum corneum (SC) hydration and markedly decreasing the levels of inflammatory cytokines such as IL-4, IL-5, IL-13, TNF-ฮฑ, IFN-ฮณ, IL-17, and TSLP, all in a dose-dependent manner. Interestingly, ASC-exosomes induced the production of ceramides and dihydroceramides. Electron microscopic analysis revealed enhanced epidermal lamellar bodies and formation of lamellar layer at the interface of the SC and stratum granulosum with ASC-exosomes treatment. Deep RNA sequencing analysis of skin lesions demonstrated that ASC-exosomes restores the expression of genes involved in skin barrier, lipid metabolism, cell cycle, and inflammatory response in the diseased area. Collectively, our results suggest that ASC-exosomes effectively restore epidermal barrier functions in AD by facilitating the de novo synthesis of ceramides, resulting in a promising cell-free therapeutic option for treating AD

    Necessity of Radical Hysterectomy for Endometrial Cancer Patients with Cervical Invasion

    Get PDF
    To determine whether radical hysterectomy is necessary in the treatment of endometrial cancer patients with cervical involvement, we reviewed the medical records of women who underwent primary surgical treatment for endometrial carcinoma and selected patients with pathologically proven cervical invasion. Among 133 patients, 62 patients underwent extrafascial hysterectomy (EH) and 71 radical or modified radical hysterectomy (RH). The decision regarding EH or RH was made at the discretion of the attending surgeon. The sensitivity of pre-operative magnetic resonance imaging for cervical invasion was 44.7% (38/85). In RH patients, 10/71 (14.1%) patients had frankly histologic parametrial involvement (PMI). All were stage III or over. Eight of 10 patients had pelvic/paraaortic node metastasis and two showed extrauterine spread. In 74 patients with stage II cancer, RH was performed in 41 and PMI was not seen. Sixty-six (89.2%) patients had adjuvant radiation therapy and there were 3 patients who had developed recurrent disease in the RH group and none in the EH group (Mean follow-up: 51 months). Although these findings cannot conclusively refute or support the necessity of radical hysterectomy in patients with cervical extension, it is noteworthy that the risk of PMI seems to be minimal in patients with a tumor confined to the uterus without evidence of extrauterine spread

    Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics

    Get PDF
    The widespread use of thermoelectric technology is constrained by a relatively low conversion efficiency of the bulk alloys, which is evaluated in terms of a dimensionless figure of merit (zT). The zT of bulk alloys can be improved by reducing lattice thermal conductivity through grain boundary and point-defect scattering, which target low- and high-frequency phonons. Dense dislocation arrays formed at low-energy grain boundaries by liquid-phase compaction in Bi_(0.5)Sb_(1.5)Te_3 (bismuth antimony telluride) effectively scatter midfrequency phonons, leading to a substantially lower lattice thermal conductivity. Full-spectrum phonon scattering with minimal charge-carrier scattering dramatically improved the zT to 1.86 ยฑ 0.15 at 320 kelvin (K). Further, a thermoelectric cooler confirmed the performance with a maximum temperature difference of 81 K, which is much higher than current commercial Peltier cooling devices

    A Soluble Acetylcholinesterase Provides Chemical Defense against Xenobiotics in the Pinewood Nematode

    Get PDF
    The pinewood nematode genome encodes at least three distinct acetylcholinesterases (AChEs). To understand physiological roles of the three pinewood nematode AChEs (BxACE-1, BxACE-2, and BxACE-3), BxACE-3 in particular, their tissue distribution and inhibition profiles were investigated. Immunohistochemistry revealed that BxACE-1 and BxACE-2 were distributed in neuronal tissues. In contrast, BxACE-3 was detected from some specific tissues and extracted without the aid of detergent, suggesting its soluble nature unlike BxACE-1 and BxACE-2. When present together, BxAChE3 significantly reduced the inhibition of BxACE-1 and BxACE-2 by cholinesterase inhibitors. Knockdown of BxACE-3 by RNA interference significantly increased the toxicity of three nematicidal compounds, supporting the protective role of BxACE-3 against chemicals. In summary, BxACE-3 appears to have a non-neuronal function of chemical defense whereas both BxACE-1 and BxACE-2 have classical neuronal function of synaptic transmission

    A Clinical Study on the Fracture of the Proximal Humerus

    No full text

    Metastatic behavior analyses of tetraspanin TM4SF5-expressing spheres in three-dimensional (3D) cell culture environment

    No full text
    Cancer metastasis involves diverse cellular functions via bidirectional communications between intracellular and extracellular spaces. To achieve development of the anti-metastatic drugs, one needs to consider the efficacy and mode of action (MOA) of the drug candidates to block the metastatic potentials of cancerous cells. Rather than under two-dimensional environment, investigation of the metastatic potentials under three-dimensional environment would be much pharmaceutically beneficent, since it can mimic the in vivo tumor lesions in cancer patients, leading to allowance of drug candidates analyzed in the 3D culture systems to lower failure rates during the anti-metastatic drug development. Here we have reviewed on the analyses of metastatic potentials of certain cancer models in 3D culture systems surrounded with extracellular matrix proteins, which could be supported by TM4SF5- and/or EMT-mediated actions. We particularly focused the initial events of the cancer metastasis, such as invasive outgrowth and dissemination from the cancer cell masses, spheroids, embedded in the 3D gel culture systems. This review summarizes the significance of tetraspanin TM4SF5 and Snail1 that are related to EMT in the metastatic potentials explored in the 3D gel systems.N

    Identification of candidate genes for the seed coat colour change in a Brachypodium distachyon mutant induced by gamma radiation using whole-genome re-sequencing

    No full text
    Brachypodium distachyon has been proposed as a model plant for agriculturally important cereal crops such as wheat and barley. Seed coat colour change from brown-red to yellow was observed in a mutant line (142-3) of B. distachyon, which was induced by chronic gamma radiation. In addition, dwarf phenotypes were observed in each of the lines 142-3, 421-2, and 1376-1. In order to identify causal mutations for the seed coat colour change, the three mutant lines and the wild type were subjected to whole-genome re-sequencing. After removing natural variations, 906, 1057, and 978 DNA polymorphisms were detected in 142-3, 421-2, and 1376-1, respectively. A total of 13 high-risk DNA polymorphisms were identified in mutant 142-3. Based on a comparison with DNA polymorphisms in 421-2 and 1376-1, candidate causal mutations for the seed coat colour change in 142-3 were selected. In the two independent A. thaliana lines carrying T-DNA insertions in the AtCHI, seed colour change was observed. We propose a frameshift mutation in BdCHI1 as a causal mutation responsible for seed colour change in 142-3. The DNA polymorphism information for these mutant lines can be utilized for functional genomics in B. distachyon and cereal crops.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Stem Rot of Gondre Caused by Rhizoctonia solani AG-2-2(IV)

    No full text
    Stem rot symptoms were observed in Gondre (Cirsium setidens) plants growing in a vinyl greenhouse in Taebaek, Korea during a disease survey in June 2022. The plants presented with dark brown to black rot on the stems at or above the soil line. Severely diseased plants displayed wilt and blight. Disease incidence among these plants ranged from 1 to 5%. Three isolates of Rhizoctonia sp. were obtained from the stem lesions of diseased plants. All isolates were identified as Rhizoctonia solani AG-2-2(IV) based on the morphological and cultural characteristics, results of the anastomosis test, and phylogenetic analysis. The pathogenicity of the isolates to Gondre plants was confirmed using an artificial inoculation test. The lesions induced by the inoculation test were similar to those observed in the investigated vinyl greenhouse. Here, we report a case of R. solani AG-2-2(IV) causing stem rot in Gondre

    Incidence of Beet Leaf Spot Caused by Neocamarosporium betae in Korea

    No full text
    From June to August 2021, we surveyed diseases affecting beet (Beta vulgaris subsp. vulgaris) plants in Cheolwon, Hoengseong, and Pyeongchang regions in Gangwon Province, Korea. We observed severe leaf spot symptoms, such as brown to dark circular or irregular spots on the leaves, in plants. Disease incidence in the plant leaves in the fields investigated at the three locations ranged from 1 to 80%. Five single-spore isolates of Phoma sp. were obtained from the diseased leaves and identified as Neocamarosporium betae based on their cultural, morphological, and molecular characteristics. Three isolates of N. betae were subsequently tested to confirm their pathogenicity in beet plants via artificial inoculation. The tested isolates caused leaf spot symptoms in the inoculated plants, similar to those observed in the plants in the investigated fields. Therefore, our findings revealed N. betae as the pathogen causing beet leaf spot in Korea
    • โ€ฆ
    corecore