1,293 research outputs found

    Neuroprotective Effects of Astaxanthin in Oxygen-Glucose Deprivation in SH-SY5Y Cells and Global Cerebral Ischemia in Rat

    Get PDF
    Astaxanthin (ATX), a naturally occurring carotenoid pigment, is a powerful biological antioxidant. In the present study, we investigated whether ATX pharmacologically offers neuroprotection against oxidative stress by cerebral ischemia. We found that the neuroprotective efficacy of ATX at the dose of 30 mg/kg (n = 8) was 59.5% compared with the control group (n = 3). In order to make clear the mechanism of ATX neuroprotection, the up-regulation inducible nitric oxide synthase (iNOS) and heat shock proteins (HSPs) together with the oxygen glucose deprivation (OGD) in SH-SY5Y cells were also investigated. The induction of various factors involved in oxidative stress processes such as iNOS was suppressed by the treatment of ATX at 25 and 50 µM after OGD-induced oxidative stress. In addition, Western blots showed that ATX elevated of heme oxygenase-1 (HO-1; Hsp32) and Hsp70 protein levels in in vitro. These results suggest that the neuroprotective effects of ATX were related to anti-oxidant activities in global ischemia

    Flavonol glycosides from the aerial parts of Aceriphyllum rossii and their antioxidant activities

    Get PDF
    The methanol extract obtained from the aerial parts ofAceriphyllum rossii (Saxifragaceae) was fractionated into ethyl acetate (EtOAc),n-BuOH and H2O layers through solvent fractionation. Repeated silica gel column chromatography of EtOAc andn-BuOH layers afforded six flavonol glycosides. They were identified as kaempferol 3-O-β-D-glucopyranoside (astragalin,1), quercetin 3-O-β-D-glucopyranoside (isoquercitrin,2), kaempferol 3-O-α-L-rhamnopyranosyl (1→6)-β-D-glucopyranoside (3), quercetin 3-O-α-L-rhamnopyranosyl (1→6)-β-D-glucopyrano-side (rutin,4), kaempferol 3-O-[α-L-rhamnopyranosyl (1→4)-α-L-rhamnopyranosyl (1→6)-β-D-glucopyranoside] (5) and quercetin 3-O-[α-L-rhamnopyranosyl (1→4)-α-L-rhamnopyranosyl (1→6)-β-D-glucopyranoside] (6) on the basis of several spectral data. The antioxidant activity of the six compounds was investigated using two free radicals such as the ABTS free radical and superoxide anion radical. Compound1 exhibited the highest antioxidant activity in the ABTS2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging method. 100 mg/L of compound1 was equivalent to 72.1±1.4 mg/L of vitamin C, and those of compounds3 and5 were equivalent to 62.7±0.5 mg/L and 54.3±1.3 mg/L of vitamin C, respectively. And in the superoxide anion radical scavenging method, compound5 exhibited the highest activity with an IC50 value of 17.6 ± 0.3 μM. In addition, some physical and spectral data of the flavonoids were confirme

    Comparative Interactomes of VRK1 and VRK3 with Their Distinct Roles in the Cell Cycle of Liver Cancer

    Get PDF
    Vaccinia-related kinase 1 (VRK1) and VRK3 are members of the VRK family of serine/threonine kinases and are principally localized in the nucleus. Despite the crucial roles of VRK1/VRK3 in physiology and disease, the molecular and functional interactions of VRK1/VRK3 are poorly understood. Here, we identified over 200 unreported VRK1/VRK3-interacting candidate proteins by affinity purification and LC-MS/MS. The networks of VRK1 and VRK3 interactomes were found to be associated with important biological processes such as the cell cycle, DNA repair, chromatin assembly, and RNA processing. Interactions of interacting proteins with VRK1/VRK3 were confirmed by biochemical assays. We also found that phosphorylations of XRCC5 were regulated by both VRK1/VRK3, and that of CCNB1 was regulated by VRK3. In liver cancer cells and tissues, VRK1/VRK3 were highly upregulated and its depletion affected cell cycle progression in the different phases. VRK3 seemed to affect S phase progression and G2 or M phase entry and exit, whereas VRK1 affects G1/S transition in the liver cancer, which could be explained by different interacting candidate proteins. Thus, this study not only provides a resource for investigating the unidentified functions of VRK1/VRK3, but also an insight into the regulatory roles of VRK1/VRK3 in biological processes.11Ysciescopuskc

    Altered expression of thioredoxin reductase-1 in dysplastic bile ducts and cholangiocarcinoma in a hamster model

    Get PDF
    Thioredoxin reductase 1 (TrxR) is a homodimeric selenoenzyme catalyzing thioredoxin (Trx) in an NADPHdependent manner. With regard to carcinogenesis, these redox proteins have been implicated in cell proliferation, transformation and anti-apoptosis. In the present study, using a hamster cholangiocarcinoma (ChC) model, we evaluated the immunohistochemical expression pattern of TrxR in precancerous lesions and ChCs as well as in normal bile ducts. The goal of this study was to determine the potential role and importance of TrxR in cholangiocarcinogenesis. For the ChC model, we obtained liver tissue specimens with dysplastic bile ducts prior to the development of ChC 8 weeks after initiation of the experiment and ChC samples at 27 weeks. The immunohistochemical analysis showed diffuse cytoplasmic overexpression of TrxR in the dysplastic bile duct epithelial cells as well as in cholangiocarcinoma; this was comparable to the negative or weakly positive in normal and type 1 hyperplastic bile ducts. However, TrxR appeared to be considerably down-regulated in the ChCs when compared to the higher expression observed in the dysplastic bile ducts. Therefore, these results suggest that TrxR overexpression followed by down-regulation might be an important event in cholangiocarcinogenesis, especially at early stages including the cellular transformation of candidate bile ducts. Further studies are however required to determine whether TrxR may be a potential target molecule for chemoprevention against cholangiocarcinogenesis. In addition, the molecular mechanism as well as the importance of the loss of TrxR in the development of cholangiocarcinoma, following dysplastic transformation of bile duct cells, also remains to be clarified.This study was supported by Kangwon National University and Korea Research Foundation Grant (KRF-2004-041- E00324). The authors wish to thank Dr. Min-Ho Choi, College of Medicine, Seoul National University, for providing Clonorchis sinensis

    On-chip Brillouin lasers based on 10 million-Q chalcogenide resonators without direct etch process

    Get PDF
    We present a new device platform which defines on-chip chalcogenide waveguide/resonators without directly etching chalcogenide. Using our platform, we have demonstrated chalcogenide ring resonators with record high Q-factor exceeding 1.1x107 which is 10 times larger than previous record on on-chip chalcogenide resonators. A ring cavity is designed and fabricated for Stimulated Brillouin lasing on our platform. Thanks to the high-Q factor, Brillouin lasing with threshold power of 1 mW is demonstrated. This value is more than an order of magnitude improvement than previous world record for on-chip chalcogenide Brillouin lasers. We also developed an efficient and flexible method for resonator waveguide coupling with our device platform. Coupling between a resonator and a waveguide can be varied from under coupled region to over-coupled regio

    Akabane viral encephalitis in calves in South Korea

    Get PDF
    This work was supported by the Brain Korea 21 Project and the Ministry of Agriculture and Forestry (399002-3), Republic of Korea

    Suppressive Effect on Lipopolysaccharide-Induced Proinflammatory Mediators by Citrus aurantium L. in Macrophage RAW 264.7 Cells via NF-κB Signal Pathway

    Get PDF
    Citrus fruits have been used as an edible fruit and a traditional medicine since ancient times. In particular, the peels of immature citrus fruits are used widely in traditional herbal medicine in Korea, as they are believed to contain bioactive components exerting anti-inflammatory activity. This study examined whether the crude methanol extract of Citrus aurantium L. (CME) has a suppressive effect on inducible enzymes and proinflammatory cytokines by inhibiting the NF-κB pathway in LPS-stimulated macrophage RAW 264.7 cells. The cells were pretreated with the indicated concentrations of CME (5, 10, 20, and 50 μg/mL) and then treated with LPS (1 μg/mL). The results showed that CME (10, 20, and 50 μg/mL) inhibited the LPS- (1 μg/mL) induced mRNA and protein expression of iNOS in macrophage Raw 264.7 cells. In addition, the expression of COX-2 was inhibited at the mRNA and protein levels by CME in a dose-dependent manner. The mRNA expression of proinflammatory cytokines, such as TNF-α and IL-6, were markedly reduced by CME (10, 20, and 50 μg/mL). Moreover, CME clearly suppressed the nuclear translocation of the NF-κB p65 subunits, which was correlated with its inhibitory effect on I-κB phosphorylation. These results suggest that CME has anti-inflammatory properties by modulating the expression of COX-2, iNOS, and proinflammatory cytokines, such as TNF-α and IL-6, in macrophage RAW 264.7 cells via the NF-κB pathway
    corecore