508 research outputs found

    Experimental realization of a momentum-space quantum walk

    Full text link
    We report on a discrete-time quantum walk that uses the momentum of ultra-cold rubidium-87 atoms as the walk space and two internal atomic states as the coin degree of freedom. Each step of the walk consists of a coin toss (a microwave pulse) followed by a unitary shift operator (a resonant ratchet pulse). We carry out a comprehensive experimental study on the effects of various parameters, including the strength of the shift operation, coin parameters, noise, and initialization of the system on the behavior of the walk. The walk dynamics can be well controlled in our experiment; potential applications include atom interferometry and engineering asymmetric walks.Comment: 11 pages, 11 figure

    Quantum Walk in Momentum Space with a Bose-Einstein Condensate

    Full text link
    We present a discrete-time, one-dimensional quantum walk based on the entanglement between the momentum of ultracold rubidium atoms (the walk space) and two internal atomic states (the "coin" degree of freedom). Our scheme is highly flexible and can provide a platform for a wide range of applications such as quantum search algorithms, the observation of topological phases, and the realization of walks with higher dimensionality. Along with the investigation of the quantum-to-classical transition, we demonstrate the distinctive features of a quantum walk and contrast them to those of its classical counterpart. Also, by manipulating either the walk or coin operator, we show how the walk dynamics can be steered or even reversed.Comment: 5 pages, 3 figure

    Up-Regulated Dicer Expression in Patients with Cutaneous Melanoma

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs (18-24 nucleotides) that have recently been shown to regulate gene expression during cancer progression. Dicer, a central enzyme in the multi-component miRNA biogenesis pathway, is involved in cutting precursor miRNAs to functionally mature forms. Emerging evidence shows that Dicer expression is deregulated in some human malignancies and it correlates with tumor progression, yet this role has not yet been investigated in skin cancers. METHODS AND FINDINGS: Using an anti-human monoclonal antibody against Dicer and immunohistochemistry, we compared the expression of Dicer protein among 404 clinically annotated controls and skin tumors consisting of melanocytic nevi (n = 71), a variety of melanomas (n = 223), carcinomas (n = 73) and sarcomas (n = 12). Results showed a cell-specific up-regulated Dicer in 81% of cutaneous, 80% of acrolentiginous and 96% of metastatic melanoma specimens compared to carcinoma or sarcoma specimens (P<0.0001). The expression of Dicer was significantly higher in melanomas compared to benign melanocytic nevi (P<0.0001). In patients with cutaneous melanomas, Dicer up-regulation was found to be significantly associated with an increased tumor mitotic index (P = 0.04), Breslow's depth of invasion (P = 0.03), nodal metastasis (P = 0.04) and a higher American Joint Committee on Caner (AJCC) clinical stage (P = 0.009). Using western blot analysis, we confirmed the cell-specific up-regulation of Dicer protein in vitro. A pooled-analysis on mRNA profiling in cutaneous tumors showed up-regulation of Dicer at the RNA level in cutaneous melanoma, also showing deregulation of other enzymes that participate in the biogenesis and maturation of canonical miRNAs. CONCLUSIONS: Increased Dicer expression may be a clinically useful biomarker for patients with cutaneous melanoma. Understanding deregulation of Dicer and its influence on miRNA maturation is needed to predict the susceptibility of melanoma patients to miRNA-based therapy in the future

    Quantum to classical walk transitions tuned by spontaneous emissions

    Get PDF
    We have realized a quantum walk in momentum space with a rubidium spinor Bose-Einstein condensate by applying a periodic kicking potential as a walk operator and a resonant microwave pulse as a coin toss operator. The generated quantum walks appear to be stable for up to ten steps and then quickly transit to classical walks due to spontaneous emissions induced by laser beams of the walk operator. We investigate these quantum to classical walk transitions by introducing well-controlled spontaneous emissions with an external light source during quantum walks. Our findings demonstrate a scheme to control the robustness of the quantum walks and can also be applied to other cold atom experiments involving spontaneous emissions

    The role of oxygen in the uptake of deuterium in lithiated graphite

    Get PDF
    We investigate the mechanism of deuterium retention by lithiated graphite and its relationship to the oxygen concentration through surface sensitive experiments and atomistic simulations. Deposition of lithium on graphite yielded 5%-8% oxygen surface concentration and when subsequently irradiated with D ions at energies between 500 and 1000 eV/amu and fluences over 10(16) cm(-2) the oxygen concentration rose to between 25% and 40%. These enhanced oxygen levels were reached in a few seconds compared to about 300 h when the lithiated graphite was allowed to adsorb oxygen from the ambient environment under equilibrium conditions. Irradiating graphite without lithium deposition, however, resulted in complete removal of oxygen to levels below the detection limit of XPS (e. g.

    Light-shift-induced behaviors observed in momentum-space quantum walks

    Full text link
    Over the last decade there have been many advances in studies of quantum walks (QWs) including a momentum-space QW recently realized in our spinor Bose-Einstein condensate system. This QW possessed behaviors that generally agreed with theoretical predictions; however, it also showed momentum distributions that were not adequately explained by the theory. We present a theoretical model which proves that the coherent dynamics of the spinor condensate is sufficient to explain the experimental data without invoking the presence of a thermal cloud of atoms as in the original theory. Our numerical findings are supported by an analytical prediction for the momentum distributions in the limit of zero-temperature condensates. This current model provides more complete explanations to the momentum-space QWs that can be applied to study quantum search algorithms and topological phases in Floquet-driven system

    Inflammation and Immune Evasion Coexist in Treponema Pallidum-infected Skin

    Get PDF
    Syphilis is a systemic, multistage, sexually transmitted infection caused by the highly invasive spirochetal bacterium, Treponema pallidum, subspecies pallidum. In the United States, the annual rate of primary and secondary syphilis (SS) between 2002 and 2016 has increased from 2.1 to 8.7 cases per 100,000.1 Gestational and congenital syphilis cases have also increased in the last few years. There is no evidence of a change in T pallidum susceptibility to penicillin as an explanation for the significant increase in the number of syphilis cases in the United States. It is more likely that changes in risk-taking behavior in the general population are responsible for this change. Although syphilis is easily treatable with penicillin, if left untreated up to one-third of syphilitic patients will go on to have the typical complications associated with tertiary syphilis. It is therefore critically important for clinicians to be well versed in the classic and not so classic dermatologic manifestations of the disease

    Metal Ion Implanted Compliant Electrodes in Dielectric Electroactive Polymer (EAP) Membranes

    Get PDF
    One of the key factors to obtain large displacements and high efficiency with dielectric electroactive polymer (DEAPs) actuators is to have compliant electrodes. Attempts to scale DEAPs down to the mm or micrometer range have encountered major difficulties, mostly due to the challenge of micropatterning sufficiently compliant electrodes. Simply evaporating or sputtering thin metallic films on elastomer membranes produces DEAPs whose stiffness is dominated by the metallic film. Low energy metal ion implantation for fabricating compliant electrodes in DEAPs presents several advantages: a) it is clean to work with, b) it does not add thick passive layers, and c) it can be easily patterned. We use this technology to fabricate DEAPs micro-actuators whose relative displacement is the same as for macro-scale DEAPs. With transmission electron microscope (TEM) we observed the formation of metallic clusters within the elastomer (PDMS) matrix, forming a nano-composite. We focus our studies on relating the properties of this nano-composite to the implantation parameters. We identified the optimal implantation parameters for which an implanted electrode presents an exceptional combination of high electrical conductivity and low compliance
    • …
    corecore