18 research outputs found

    Microwave Imaging of The Neck by Means of Inverse-Scattering Techniques

    Get PDF
    In recent decades, in the field of applied electromagnetism, there has been a significant interest in the development of non-invasive diagnostic methods through the use of electromagnetic waves, especially at microwave frequencies [1]. Microwave imaging (MWI) - considered for a long period an emerging technique - has potential- ities in numerous, and constantly increasing, applications in different areas, ranging from civil and industrial engineering, with non-destructive testing and evaluations (example e.g., monitoring contamination in food, sub-surface imaging based on both terrestrial and space platforms; detection of cracks and defects in structures and equipments of various kinds; antennas diagnostics, etc. ), up to the biomedical field [2], [3], [4], [5], [6], [7]. One of the first applications of microwave imaging (MWI) in the medical field was the detection of breast tumors [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]. Subsequently, brain stroke detection has received great attention [18],[19], [20], too. Other possible clinical applications include imaging of torso, arms, and other body parts [21], [22], [23], [24]. The standard diagnostic method are computerized tomography (CT), nuclear magnetic resonance (NMR) and X-rays. Although these consolidated techniques are able to provide extraordinary diagnostic results, some limitations still exist that stimulate the continuous research of new imaging solutions. In this context, MWI can be overcome some limitations of these techniques, such as the ionizing radiations in the CT and X-rays or the disadvantages of being expensive, in the NMR case. This motivates the study of MWI methods and systems, at least as a complementary diagnostic tools. The aim of electromagnetic diagnostic techniques is to determine physical param- eters (such as the electrical conductivity and the dielectric permittivity of materials) and/or geometrics of the objects under test, which are suppose contained within a certain space region, sometimes denoted as "investigation domain". In particular, by means of a properly designed transmitting antenna, the object under test is illuminated by an electromagnetic radiation. The interaction between the incident radiation and the target causes the so-called electromagnetic scattering phenomena. The field generated by this interaction can be measured around the object by means of one or more receiving antennas, placed in what is sometimes defined as the "ob- servation domain". Starting from the measured values of the scattering field, it is possible to reconstruct the fundamental properties of the test object by solving an inverse electromagnetic scattering problem. As it is well known, the inverse problem is non-linear and strongly ill-posed, unless specific approximations are used, which can be applied in specific situations. In several cases, two-dimensional configurations (2D) can be assumed, i.e., the inspected target has a cylindrical shape, at least as a first approximation. More- over, often the target is illuminated by antennas capable of generating a transverse magnetic (TM) electromagnetic field [25]. These assumptions reduces the problem from a vector and three-dimensional problem to a 2D and scalar one, since it turns out that the only significant the field components are those co-polarized with the incident wave and directed along to the cylinder axis. In recent years, several methods and algorithms that allow an efficient resolution of the equations of electromagnetic inverse scattering problem have been developed. The proposed approaches can be mainly grouped into two categories: qualitative and quantitative techniques. Qualitative procedures, such as the delay-and-sum technique [26], the linear sampling method [27], and the orthogonality sampling method [28], usually provides reconstructions that allows to extract only some parameters of the targets, such as position, dimensions and shape. However, they are in most cases fast and computationally efficient.On the contrary, quantitative methods allows in principle to retrieve the full distributions of the dielectric properties of the object under test, which allows to also obtain additional information on the materials composing the inspected scenario. Such approaches are often computationally very demanding [25]. Qualitative and quantitative approaches can be combined in order to develop hybrid algorithms [29], [30], [31], [32], [33], [34]. An example is represented by the combination of a delay-and-sum qualitative focusing technique [35], [36], [37] with a quantitative Newton scheme performing a regularization in the framework of the Lp Banach spaces [38], [39], [40]. Holographic microwave imaging techniques are other important qualitative meth- ods. In this case, the processing of data is performed by using through direct and inverse Fourier transforms in order to obtain a map of the inspected target. As previously mentioned, quantitative approaches aim at retrieving the distributions of the dielectric properties of the scene under test, although they can be significantly more time-consuming especially in 3D imaging. Among them, Newton- type approach are often considered [39], [40]. Recently, artificial neural networks (ANNs) have been considered as powerful tools for quantitative MWI. The first proposed ANNs were developed as shallow network architectures, in which one or at least two hidden layers were considered [41], [42]. Successively, deep neural networks have been proposed, in which more complex fully-connected architecture are adopted. In this framework, Convolutional Neural Networks (CNNs) have been developed as more complex topologies, for classification problems or for solving the inverse scattering problems [43], [44], [45], [46], [47], [48], [49]. In the inverse scattering problems, the CNNs often require a preliminary image retrieved by other techniques [43], [44], [47], [50], [51] and do not allow directly inver- sion from the scattered electric fields collected by the receiving antennas. Standard CNNs are developed for different applications. Examples are represented by Unet [52], ResNet [53] and VGG [54]. This Thesis is devoted to the application of MWI techniques to inspect the human neck. Several pathologic conditions can affect this part of the body, and a non-invasive and nonionizing imaging method can be useful for monitoring patients. The first pathological condition studied in this Thesis is the cervical myelopathy [55], which is a disease that damages the first part of the spinal cord, between the C3 and C7 cervical vertebrae located near the head [56]. The spinal cord has an important function in the body, since it represents the principal actor in the nervous system. For this reason, it is "protected" inside the spinal canal [57]. A first effect of cervical myelopathy is a reduction of the spinal canal sagittal diameter, which may be caused by different factors [58]. Some patients are asymptomatic and for this reason a continuous monitoring could be very helpful for evaluating the pathology progression. To this end, the application of qualitative and quantitative MWI approaches are proposed in this document. The second neck pathology studied in this Thesis is the neck tumor, in particular supraglottic laryngeal carcinoma [59], thyroid cancer [60] and cervical lymph node metastases [61]. These kinds of tumors are frequently occurring and shown a 50% 5-year survival probability [61],[62], [63], [64]. Fully-connected neural network are proposed for neck tumor detection. The Thesis is organized as follows. In Chapter 2, the relevant concepts of the electromagnetic theory are recalled. Chapter 3 describes the developed inversion algorithms. It also reports an extensive validation considering both synthetic and experimental data. Detailed data about the imaging approach based on machine learning are provided in Chapter 4. This chapter also reports the results obtained in a set of simulations and experiments. Finally, some conclusions are drawn in Chapter 5

    Combined use of MRI, fMRIand cognitive data for Alzheimer's Disease: Preliminary results

    Get PDF
    MRI can favor clinical diagnosis providing morphological and functional information of several neurological disorders. This paper deals with the problem of exploiting both data, in a combined way, to develop a tool able to support clinicians in the study and diagnosis of Alzheimer's Disease (AD). In this work, 69 subjects from the ADNI open database, 33 AD patients and 36 healthy controls, were analyzed. The possible existence of a relationship between brain structure modifications and altered functions between patients and healthy controls was investigated performing a correlation analysis on brain volume, calculated from the MRI image, the clustering coefficient, derived from fRMI acquisitions, and the Mini Mental Score Examination (MMSE). A statistically-significant correlation was found only in four ROIs after Bonferroni's correction. The correlation analysis alone was still not sufficient to provide a reliable and powerful clinical tool in AD diagnosis however. Therefore, a machine learning strategy was studied by training a set of support vector machine classifiers comparing different features. The use of a unimodal approach led to unsatisfactory results, whereas the multimodal approach, i.e., the synergistic combination of MRI, fMRI, and MMSE features, resulted in an accuracy of 95.65%, a specificity of 97.22%, and a sensibility of 93.93%

    WSN Hardware for Automotive Applications: Preliminary Results for the Case of Public Transportation

    Get PDF
    The ubiquitous nature and great potential ofWireless Sensors Network has not yet been fully exploited in automotive applications. This work deals with the choice of the cost-effective hardware required to face the challenges and issues proposed by the new trend in the development of intelligent transportation systems. With this aim, a preliminary WSN architecture is proposed. Several commercially available open-source platforms are compared and the Raspberry Pi stood out as a suitable and viable solution. The sensing layer is designed with two goals. Firstly, accelerometric, temperature and relative humidity sensors were integrated on a dedicated PCB to test if mechanical or environmental stresses during bus rides could be harmful to the device. The monitored physical quantities could be used to improve the quality of service. Then, the rationale and functioning of the management and service layer is presented. The proposed cost-effective WSN node is employed and tested to transmit messages and videos

    Combined Use of MRI, fMRIand Cognitive Data for Alzheimer’s Disease: Preliminary Results

    No full text
    MRI can favor clinical diagnosis providing morphological and functional information of several neurological disorders. This paper deals with the problem of exploiting both data, in a combined way, to develop a tool able to support clinicians in the study and diagnosis of Alzheimer’s Disease (AD). In this work, 69 subjects from the ADNI open database, 33 AD patients and 36 healthy controls, were analyzed. The possible existence of a relationship between brain structure modifications and altered functions between patients and healthy controls was investigated performing a correlation analysis on brain volume, calculated from the MRI image, the clustering coefficient, derived from fRMI acquisitions, and the Mini Mental Score Examination (MMSE). A statistically-significant correlation was found only in four ROIs after Bonferroni’s correction. The correlation analysis alone was still not sufficient to provide a reliable and powerful clinical tool in AD diagnosis however. Therefore, a machine learning strategy was studied by training a set of support vector machine classifiers comparing different features. The use of a unimodal approach led to unsatisfactory results, whereas the multimodal approach, i.e., the synergistic combination of MRI, fMRI, and MMSE features, resulted in an accuracy of 95.65%, a specificity of 97.22%, and a sensibility of 93.93%

    Microwave Heating Improvement: Permittivity Characterization of Water–Ethanol and Water–NaCl Binary Mixtures

    No full text
    Microwave heating offers a lot of advantages compared to conventional heating methods in the chemical reactions field due to its positive effects on reaction time and selectivity. Dielectric properties, and in particular permittivity, of substances and mixtures, are important for the optimization of microwave heating processes; notwithstanding this, specific databases are poor and far from being complete, and in the scientific literature very little data regarding these properties can be found. In this work, impedance measurements were carried out using a specially designed system to get the real and imaginary parts of the dielectric constant. The apparatus was tested in the estimation of permittivity of water–ethanol and water–NaCl mixtures, varying their composition to obtain a wide range of permittivity values. The results were compared to literature data and fitted with available literature models to verify the correspondence between them, finding that permittivity dependence on mixture composition can be effectively described by the models

    Microwave imaging of cervical myelopathy: A preliminary feasibility assessment

    No full text
    Microwave imaging is acquiring a growing importance in several biomedical applications, such as breast and brain stroke diagnosis and monitoring. In this work, a preliminary feasibility analysis concerning the application of such a technique to the monitoring of cervical myelopathy is reported. In particular, suitable working conditions are defined on the basis of a simplified multilayer model of the neck and a first inversion result, aimed at assessing the possibility of retrieving the spinal cord size, is shown

    A microwave imaging technique for neck diseases monitoring

    No full text
    A microwave imaging approach for the diagnosis of neck diseases is proposed in this paper. Specifically, the case study of cervical myelopathy has been considered. The developed technique aims at retrieving the distributions of the dielectric properties of a cross section of the neck, from which information about the spinal canal size can be extracted. To this end, a new hybrid inversion procedure exploiting a qualitative delay-and-sum method together with a conjugate-gradient-like scheme developed in Lebesgue spaces has been used. The feasibility of the approach has been assessed by means of a prototype of measurement system equipped with ten bowtie-like antennas and using a simplified phantom. Preliminary experimental results are reported

    Full-wave Inversion and Antenna Modeling for the Characterization of Cylindrical Targets

    No full text
    The reconstruction of the geometric and dielectric properties of unknown targets starting from measurements of the electromagnetic fields they scatter is essential in many different applicative areas, ranging from object detection in subsurface regions [1] to the recent developments related to biomedical and environmental engineering [2]. To obtain such information, an inverse problem should be solved, in which the unknown is represented by the characteristics of the objects. To this end, proper algorithms should be devised, specifically tuned for the measurement setup used for the inspection and for the target configuration

    Microwave medical imaging of the human neck using a neural-networks-based inversion procedure: A phantom study

    No full text
    A preliminary experimental validation of a machine-learning technique for microwave imaging of the neck is reported in this paper. Specifically, a fully-connected neural network is used to retrieve the dielectric properties of a simplified neck phantom. The architecture of the network, e.g., number of layers and neurons in each layer, is optimized through a numerical analysis on simulated data. The initial results confirm that it is possible to train the network with simulated data only and to test it with real data, obtaining good reconstruction results

    Microwave tomography of the neck with ANNs: Preliminary results with simplified numerical phantoms

    No full text
    A microwave imaging approach based on artificial neural networks (ANNs) for the reconstruction of the properties of a cross section of the neck is proposed in this paper. The aim of this work is to retrieve the distribution maps of the neck dielectric properties starting from electromagnetic scattered fields. Possible applications include the diagnosis of cervical diseases. To this end, simplified neck phantoms were developed to test the feasibility of the proposed method. The developed network presents four fullyconnected layers with a last regression layer. Several numerical tests were performed to evaluate the performance of the ANN. The preliminary findings indicate a quite good reconstruction of dielectric properties and the possibility to evaluate the spinal canal dimension
    corecore