22 research outputs found

    Signal Obstructions at GNSS Stations: Benefits From Multi-GNSS Observations

    Get PDF
    The current accuracy of IGS products, few centimeter level, requires amongst other things that the location for GNSS antennas are nearly optimal for GNSS observations. This includes a low multipath environment and little to no signal obstructions. However, this is not guaranteed for every station especially in urban areas and mountainous regions. As some applications such as GNSS for sea level studies or to monitor landslides require GNSS antennas to be installed at a specific site, it is clear that the environment might not be favourable for GNSS observations. In this study, we investigate the effect of signal obstructions on station positions, specifically the height component, based on simulated obstruction scenarios using a modified Bernese GNSS Software version 5.2 (BSW52). The behaviours of different obstruction scenarios and the impact of multi-GNSS (GPS+GLONASS for now) observations for both clear and obstructed stations are discussed

    GENESIS: Co-location of Geodetic Techniques in Space

    Get PDF
    Improving and homogenizing time and space reference systems on Earth and, more directly, realizing the Terrestrial Reference Frame (TRF) with an accuracy of 1mm and a long-term stability of 0.1mm/year are relevant for many scientific and societal endeavors. The knowledge of the TRF is fundamental for Earth and navigation sciences. For instance, quantifying sea level change strongly depends on an accurate determination of the geocenter motion but also of the positions of continental and island reference stations, as well as the ground stations of tracking networks. Also, numerous applications in geophysics require absolute millimeter precision from the reference frame, as for example monitoring tectonic motion or crustal deformation for predicting natural hazards. The TRF accuracy to be achieved represents the consensus of various authorities which has enunciated geodesy requirements for Earth sciences. Today we are still far from these ambitious accuracy and stability goals for the realization of the TRF. However, a combination and co-location of all four space geodetic techniques on one satellite platform can significantly contribute to achieving these goals. This is the purpose of the GENESIS mission, proposed as a component of the FutureNAV program of the European Space Agency. The GENESIS platform will be a dynamic space geodetic observatory carrying all the geodetic instruments referenced to one another through carefully calibrated space ties. The co-location of the techniques in space will solve the inconsistencies and biases between the different geodetic techniques in order to reach the TRF accuracy and stability goals endorsed by the various international authorities and the scientific community. The purpose of this white paper is to review the state-of-the-art and explain the benefits of the GENESIS mission in Earth sciences, navigation sciences and metrology.Comment: 31 pages, 9 figures, submitted to Earth, Planets and Space (EPS

    Der Wert gemeinsamer Visionen für eine klimaneutrale Gesellschaft

    No full text
    Konkrete Visionen einer wünschenswerten Zukunft helfen uns, von einer Problemfokussierung hin zu einer Lösungsorientierung zu wechseln. Werden Visionen gemeinsam erarbeitet, können sie als Kompass für gemeinsame Entwicklungs- und Transformationsprozesse dienen. Wir stellen in diesem Beitrag ein Beispiel aus dem Berner Oberland vor

    Inspirationen für ein klimaneutrales Oberland-Ost

    No full text

    Effect of unmodelled tidal displacements in GPS and GLONASS coordinate time series

    No full text
    This study demonstrates the different effects of unmodelled (sub-)daily tidal displacement in Global Positioning System (GPS) and GLObalnaya NAvigatsionnaya Sputnikovaya Sistema (GLONASS) coordinate time-series. The results show that more than two propagated periodic signals appear in GPS and GLONASS Precise Point Positioning (PPP) coordinate time-series in the presence of an unmodelled M2 /O1 tidal displacements as a result of a non-overlapping 24-hr data sampling. To summarize the propagated periodic signals at the fortnightly period, an unmodelled M2 tidal displacement propagates predominately into two long-period signals at 13.6x (x is a positive integer) and 14.76 d for GPS, while only one significant propagated periodic signal at 14.76 d is discernible for GLONASS. Similarly, significant propagated periodic signals at 13.6x and 14.19 d for GPS and only at 14.19 d for GLONASS are evident as a result of an unmodelled O1 tidal displacement. However, an unmodelled M f (long- period) signal results in a strong power of similar magnitude at 13.6x d (∼13.66 d) for both GPS and GLONASS solutions. The appearance of different periodic signals as a result of the same unmodelled tidal displacement is attributed to the different ground repeat periods of the constellations. The latter is likely to explain the reason why the 13.6x-d fortnightly signal is present only in GPS solutions. Comparing the powers of the M2 propagated periodic signals at 13.6x and 14.76 d on average from 32 globally distributed stations, the amplitude of the former is larger than for the latter by an order of magnitude. The results of this study demonstrate that the 13.6x-d periodic signal in GPS/GNSS (Global Navigation Satellite System) derived products is a joint contribution of the propagation of unmodelled (sub-)daily tidal displacements and errors at longer periods with the former appearing to contribute more. Significant reduction of the propagated periodic signals is achieved from combined-system solutions where including Galileo (the European GNSS) to the combined solution already shows benefits by reducing the effect even before the system has reached its full constellation. Combined GNSS solutions will benefit the applications of GNSS time-series for retrieving tidal harmonic signals such as Mf as they reduce constellation specific propagation effects
    corecore