314 research outputs found

    Quantity and quality of China's water from demand perspectives

    Get PDF
    China is confronted with an unprecedented water crisis regarding its quantity and quality. In this study, we quantified the dynamics of China's embodied water use and chemical oxygen demand (COD) discharge from 2010 to 2015. The analysis was conducted with the latest available water use data across sectors in primary, secondary and tertiary industries and input-output models. The results showed that (1) China's water crisis was alleviated under urbanisation. Urban consumption occupied the largest percentages (over 30%) of embodied water use and COD discharge, but embodied water intensities in urban consumption were far lower than those in rural consumption. (2) The 'new normal' phase witnessed the optimisation of China's water use structures. Embodied water use in light-manufacturing and tertiary sectors increased while those in heavy-manufacturing sectors (except chemicals and transport equipment) dropped. (3) Transformation of China's international market brought positive effects on its domestic water use. China's water use (116-80 billion tonnes (Bts))9 and COD discharge (3.95-2.22 million tonnes (Mts)) embodied in export tremendously decreased while its total export values (11-25 trillion CNY) soared. Furthermore, embodied water use and COD discharge in relatively low-end sectors, such as textile, started to transfer from international to domestic markets when a part of China's production activities had been relocated to other developing countries

    City-level water withdrawal in China:Accounting methodology and applications

    Get PDF
    In the context of the freshwater crisis, accounting for water withdrawal could help planners better regulate water use in different sectors to combat water scarcity. However, the water withdrawal statistics in China are patchy, and the water data across all sectors at the city level appear to be relatively insufficient. Hence, we develop a general framework to, for the first time, estimate the water withdrawal of 58 economic–social–environmental sectors in cities in China. This methodology was applied because only inconsistent water statistics collected from different data sources at the city level are available. We applied it to 18 representative Chinese cities. Different from conventional perceptions that agriculture is usually the largest water user, industrial and household water withdrawal may also occupy the largest percentages in the water-use structure of some cities. The discrepancy among annual household water use per capita in the urban areas of different cities is relatively small (as is the case for rural areas), but that between urban and rural areas is large. As a result, increased attention should be paid to controlling industrial and urban household water use in particular cities. China should specifically prepare annual water accounts at the city level and establish a timetable to tackle water scarcity, which is a basic step toward efficient and sustainable water crisis mitigation

    The comprehensive environmental efficiency of socioeconomic sectors in China: An analysis based on a non-separable bad output SBM

    Get PDF
    The increasingly high frequency of heavy air pollution in most regions of China signals the urgent need for the transition to an environmentally friendly production performance by socioeconomic sectors for the sake of people's health and sustainable development. Focusing on CO2 and major air pollutants, this paper presents a comprehensive environmental efficiency index based on evaluating the environmental efficiency of major socioeconomic sectors, including agriculture, power, industry, residential and transportation, at the province level in China in 2010 based on a slack-based measure DEA model with non-separable bad output and weights determined by the coefficient of variation method. In terms of the environment, 5, 16, 6, 7 and 4 provinces operated along the production frontier for the agricultural, power, industrial, residential and transportation sectors, respectively, in China in 2010, whereas Shanxi, Heilongjiang, Ningxia, Hubei and Yunnan showed lowest efficiency correspondingly. The comprehensive environmental efficiency index varied from 0.3863 to 0.9261 for 30 provinces in China, with a nationwide average of 0.6383 in 2010; Shanghai ranked at the top, and Shanxi was last. Regional disparities in environmental efficiency were identified. A more detailed inefficiency decomposition and benchmarking analysis provided insight for understanding the source of comprehensive environmental inefficiency and, more specifically, the reduction potential for CO2 and air pollutants. Some specific research and policy implications were uncovered from this work

    Japan prefectural emission accounts and socioeconomic data 2007 to 2015

    Get PDF
    In the wake of the Fukushima nuclear disaster, Japan largely moved away from nuclear power generation and turned back towards an energy sector dominated by fossil fuels. As a result, the pace towards reaching emission reduction targets has largely slowed down. This situation indicates that higher emissions will continue to be generated if there is no appropriate and efficient measurement implemented to bridge the energy demand gap. To contribute adequate mitigation policies, a detailed inventory of both CO2 emissions and socioeconomic factors, both at the national and regional level, should be issued. Thereby, this work contributes to a time-series emission with a record of 47 prefectures in Japan as well as their associated socioeconomic features. The compiled emission inventory is based on three major fossil fuels and 26 sectors with careful emission allocations for regional electricity generation. This dataset is uniformly formatted and can be expected to provide vital information to set regional reduction allowances and sectoral reduction priorities

    Variations of China's emission estimates:Response to uncertainties in energy statistics

    Get PDF
    The accuracy of China's energy statistics is of great concern because it contributes greatly to the uncertainties in estimates of global emissions. This study attempts to improve the understanding of uncertainties in China's energy statistics and evaluate their impacts on China's emissions during the period of 1990-2013. We employed the Multi-resolution Emission Inventory for China (MEIC) model to calculate China's emissions based on different official data sets of energy statistics using the same emission factors. We found that the apparent uncertainties (maximum discrepancy) in China's energy consumption increased from 2004 to 2012, reaching a maximum of 646Mtce (million tons of coal equivalent) in 2011 and that coal dominated these uncertainties. The discrepancies between the national and provincial energy statistics were reduced after the three economic censuses conducted during this period, and converging uncertainties were found in 2013. The emissions calculated from the provincial energy statistics are generally higher than those calculated from the national energy statistics, and the apparent uncertainty ratio (the ratio of the maximum discrepancy to the mean value) owing to energy uncertainties in 2012 took values of 30.0, 16.4, 7.7, 9.2 and 15.6%, for SO2, NOx, VOC, PM2.5 and CO2 emissions, respectively. SO2 emissions are most sensitive to energy uncertainties because of the high contributions from industrial coal combustion. The calculated emission trends are also greatly affected by energy uncertainties - from 1996 to 2012, CO2 and NOx emissions, respectively, increased by 191 and 197% according to the provincial energy statistics but by only 145 and 139% as determined from the original national energy statistics. The energy-induced emission uncertainties for some species such as SO2 and NOx are comparable to total uncertainties of emissions as estimated by previous studies, indicating variations in energy consumption could be an important source of China's emission uncertainties

    Four system boundaries for carbon accounts

    Get PDF
    Knowing the carbon emission baseline of a region is a precondition for any mitigation effort, but the baselines are highly dependent on the system boundaries for which they are calculated. On the basis of sectoral energy statistics and a nested provincial and global multi-regional input–output model, we calculate and compare four different system boundaries for China's 30 provinces and major cities. The results demonstrate significant differences in the level of emissions for the different system boundaries. Moreover, the associated emissions with each system boundary varies with the regional development level, i.e. richer areas outsource more emissions to other areas, or in other words boundary 4 emissions are higher than boundary 1 emissions for rich areas and vice versa for poor areas. Given these significant differences it is important to be aware of the implications the choice of an accounting system might have on outcomes

    Emission accounting and drivers in East African countries

    Get PDF
    East Africa is typical of the less developed economies that have emerged since the 21st century, whose brilliant economic miracle has also triggered the rapid growth of energy consumption and carbon dioxide emissions. However, previous carbon accounting studies have never focused on the region. Based on multi-source data, this paper rebuilt the 45-sectors carbon emission inventories of eight East African countries from 2000 to 2017, and used index decomposition analysis to quantify the drivers of growth. Here we found that overall the CO2 emissions show a 'two-stage exponential growth' pattern, with significant heterogeneity between countries. In terms of the energy mix, technical progress in hydro and geothermal energy was almost offset by a growing appetite for oil and coal, making it the weak and valuable factor driving emissions reduction (−1.4Mt). But it was far from enough to overcome the pressure of economic and population growth, which brought about a 13Mt and 11Mt emission growth respectively from 2000 to 2017. Increasing energy intensity due to industrialization and transport development also contributed to an increment of 6.4Mt. Low-carbon policies should be tailored to local conditions and targeted at the improvement of energy efficiency and use of renewable energy so as to achieve a win-win situation between sustainable economic growth and emission reduction

    City-level water-energy nexus in Beijing-Tianjin-Hebei region

    Get PDF
    Water-energy nexus in a city can either prompt or undermine its development. Yet in China, the relevant research is rarely found. This study accounts the city-level water-energy nexus in Beijing-Tianjin-Hebei region in 2012 from both production and consumption perspectives, where input-output analysis based on city-level input-output tables are applied to conduct consumption-based accounts. Regarding water for energy, Beijing, Tianjin and Tangshan occupy the largest amounts of water for production in the energy sector, at 203 million tonnes (Mt), 148 Mt and 118 Mt, and they also consume most water for energy, at 6690 Mt, 1328 Mt and 1476 Mt. In terms of energy for water, Shijiazhuang and Tianjin have the largest amounts of CO2 emissions for production and consumption respectively, at 28 thousand tonnes (Kt) and 1746 Kt. Furthermore, local authorities should prioritise electricity sector as it holds 69% and 72% of the total water amounts for production and consumption in the energy sector. Besides, integrated management is crucial for cities with low water and energy efficiency (Baoding and Zhangjiakou), and for large CO2 emitters in Hebei province in order to ensure their water and energy sustainability without stunting their economic growth

    Adaptive CO2 emissions mitigation strategies of global oil refineries in all age groups

    Get PDF
    Continuous expansion of fossil fuel-based energy infrastructure can be one of the key obstacles in delivering the Paris Agreement goals. The oil refinery is the world's third-largest stationary emitter of greenhouse gases (GHGs), but the historical mapping of the regional-specific refining industry, their CO2 emission patterns, and mitigation potentials remain understudied. This study develops a plant-level, technical-specific, and time-series global refinery CO2 emission inventory, covering 1,056 refineries from 2000 to 2018. The CO2 emissions of the refinery industry were about 1.3 gigatonnes (Gt) in 2018, representing 4% of the total. If current technical specifications continue, the global refineries will cumulatively emit 16.5 Gt of CO2 during 2020–2030. The refineries vary in operation age, refining configuration structure, and geographical location, leading to the demand for specific mitigation strategies, such as improving refinery efficiency and upgrading heavy oil processing technologies, which could potentially reduce global cumulative emissions by 10% during 2020–2030
    • …
    corecore