237 research outputs found
Magnetocrystalline Anisotropy Energy of a Transition Metal Monolayer: A Non-perturbative Theory
The magnetocrystalline anisotropy energy for a monolayer of Fe and
Ni is determined using a fully convergent tight-binding calculation including
- hybridization. The spin-orbit interaction is treated
non-perturbatively. Remarkably, we find and
important contributions to due to the lifting of degeneracies near
the Fermi-level. This is supported by the calculated decrease of the anisotropy
energy with increasing temperature on a scale of several hundred K. Our results
clarify the present debate on the origin of .Comment: 11 pages (RevTeX) with 2 figures, appended as Postscript file
{\it Ab initio} calculations of magnetic structure and lattice dynamics of Fe/Pt multilayers
The magnetization distribution, its energetic characterization by the
interlayer coupling constants and lattice dynamics of (001)-oriented Fe/Pt
multilayers are investigated using density functional theory combined with the
direct method to determine phonon frequencies. It is found that ferromagnetic
order between consecutive Fe layers is favoured, with the enhanced magnetic
moments at the interface. The bilinear and biquadratic coupling coefficients
between Fe layers are shown to saturate fast with increasing thickness of
nonmagnetic Pt layers which separate them. The phonon calculations demonstrate
a rather strong dependence of partial iron phonon densities of states on the
actual position of Fe monolayer in the multilayer structure.Comment: 7 pages, 8 figure
Ferromagnetic resonance study of sputtered Co|Ni multilayers
We report on room temperature ferromagnetic resonance (FMR) studies of [
Co Ni]N sputtered films, where nm. Two
series of films were investigated: films with same number of CoNi bilayer
repeats (N=12), and samples in which the overall magnetic layer thickness is
kept constant at 3.6 nm (N=1.2/). The FMR measurements were conducted with a
high frequency broadband coplanar waveguide up to 50 GHz using a flip-chip
method. The resonance field and the full width at half maximum were measured as
a function of frequency for the field in-plane and field normal to the plane,
and as a function of angle to the plane for several frequencies. For both sets
of films, we find evidence for the presence of first and second order
anisotropy constants, and . The anisotropy constants are strongly
dependent on the thickness , and to a lesser extent on the total thickness
of the magnetic multilayer. The Land\'e g-factor increases with decreasing
and is practically independent of the multilayer thickness. The magnetic
damping parameter , estimated from the linear dependence of the
linewidth, , on frequency, in the field in-plane geometry,
increases with decreasing . This behaviour is attributed to an enhancement
of spin-orbit interactions with decreasing and in thinner films, to a
spin-pumping contribution to the damping.Comment: 18 pages, 13 figure
Особливості імуно-гормонального та мікробіологічного статусу у жінок з різними морфологічними формами поліпів ендометрія
Обследовано 58 женщин с полипами эндометрия. Выявлены особенности микробиологического
пейзажа, гормонального и иммунного статуса в зависимости от морфологических форм полипов эндометрия.
проведенный анализ позволил выделить группы риска по развитию полипов эндометрия. показано, что
полип эндометрия следует рассматривать не как местный процесс, а как реакцию эндометрия в ответ на
повреждение гормонального и иммунного гомеостаза, что необходимо учитывать при выборе лечения
данной патологии58 women with endometrial polyps were investigated. Specific microflora and hormonal and immune status
depending on the morphological forms of endometrial polyps were found. The analysis performed allowed to
allocate risk groups according to development of endometrial polyp. It was shown that endometrial polyp shall be
considered as endometrial reaction in response to hormonal and immune homeostasis disorder, rather than local
process. This should be borne in mind when choosing treatment for this patholog
Improvement in the regulation of the vitamin K antagonist acenocoumarol after a standard initial dose regimen: prospective validation of a prescription model
Background In a retrospective study we have developed a model which determines the dose of acenocoumarol based on the age of the patient and on the first INR obtained after a standard initial loading dose. The group of patients of this study was used as the control group of the present study. Aim The aim of this study was to prospectively validate the model and to assess whether the use of this model improves the quality of the treatment in the 0-2 months study period. Patients and methods In 197 patients the model was evaluated by (1) in the initial phase: comparison of INRs with the control group, after assessing the dose according to the model, and (2) in the 0-2 months period: calculation of the percentage of time spent in the therapeutic target range compared to the control group. Furthermore, the eventual dose was compared to the dose of the model when the INRs were within the therapeutic target range for the first time and on two successive occasions. Results (1) When dosed according to the model, 50% of INRs in the total group were within the therapeutic target range compared to 45% in the control group, and (2) the percentage time spent within this range was 68 in the total group compared to 63 in the control group (P = 0.0013). When the INRs were within the range for the first time and successively twice, the eventual doses were similar to the model in 59 and 50%, respectively. About 20% of the patients did not achieve two successive INRs within the range. Conclusions Using the model the quality of treatment improved. We advice to use a standardized individualized dose regimen at the initiation of vitamin K antagonist treatmen
Calculation of magnetic anisotropy energy in SmCo5
SmCo5 is an important hard magnetic material, due to its large magnetic
anisotropy energy (MAE). We have studied the magnetic properties of SmCo5 using
density functional theory (DFT) calculations where the Sm f-bands, which are
difficult to include in DFT calculations, have been treated within the LDA+U
formalism. The large MAE comes mostly from the Sm f-shell anisotropy, stemming
from an interplay between the crystal field and the spin-orbit coupling. We
found that both are of similar strengths, unlike some other Sm compounds,
leading to a partial quenching of the orbital moment (f-states cannot be
described as either pure lattice harmonics or pure complex harmonics), an
optimal situation for enhanced MAE. A smaller portion of the MAE can be
associated with the Co-d band anisotropy, related to the peak in the density of
states at the Fermi energy. Our result for the MAE of SmCo5, 21.6 meV/f.u.,
agrees reasonably with the experimental value of 13-16 meV/f.u., and the
calculated magnetic moment (including the orbital component) of 9.4 mu_B agrees
with the experimental value of 8.9 mu_B.Comment: Submitted to Phys. Rev.
Ferromagnetism and Temperature-Driven Reorientation Transition in Thin Itinerant-Electron Films
The temperature-driven reorientation transition which, up to now, has been
studied by use of Heisenberg-type models only, is investigated within an
itinerant-electron model. We consider the Hubbard model for a thin fcc(100)
film together with the dipole interaction and a layer-dependent anisotropy
field. The isotropic part of the model is treated by use of a generalization of
the spectral-density approach to the film geometry. The magnetic properties of
the film are investigated as a function of temperature and film thickness and
are analyzed in detail with help of the spin- and layer-dependent quasiparticle
density of states. By calculating the temperature dependence of the
second-order anisotropy constants we find that both types of reorientation
transitions, from out-of-plane to in-plane (``Fe-type'') and from in-plane to
out-of-plane (``Ni-type'') magnetization are possible within our model. In the
latter case the inclusion of a positive volume anisotropy is vital. The
reorientation transition is mediated by a strong reduction of the surface
magnetization with respect to the inner layers as a function of temperature and
is found to depend significantly on the total band occupation.Comment: 10 pages, 8 figures included (eps), Phys Rev B in pres
Coulomb Correlations and Magnetic Anisotropy in ordered CoPt and FePt alloys
We present results of the magneto-crystalline anisotropy energy (MAE)
calculations for chemically ordered CoPt and FePt alloys taking into
account the effects of strong electronic correlations and spin-orbit coupling.
The local spin density + Hubbard U approximation (LSDA+U) is shown to provide a
consistent picture of the magnetic ground state properties when intra-atomic
Coulomb correlations are included for both 3 and 5 elements. Our results
demonstrate significant and complex contribution of correlation effects to
large MAE of these material.Comment: revised version; 4 pages, 2 figure
- …
