7 research outputs found

    The accuracy and interobserver reliability of identification of interalveolar foramina in the mandible using dental radiography

    No full text
    Background: The evaluation of periapical radiographic evidence of these foramina might be helpful to avoid hemorrhaging of the highly vascularized regions of the floor of the mouth. Accuracy and reliability of the dental radiography in depicting the interalveolar medial foramina on 28 dry mandibles was tested in this study. Materials and Methods: The 28 mandibles were radiographically examined for the presence of median and lateral foramina that were interalveolar. The foramina diameters and the distance of the foramen to the cementoenamel junction, and to the alveolar bone crest, were measured. Two radiographic images of the symphysis areas were obtained, with and without the insertion of metal wires into the foramina. On the radiographic films, the presence of the foramina was identified and marked by two periodontists. The accuracy, sensitivity, specificity, interobserver reliability and the agreement of the readings between the diagnostic films and the films with wire insertions were analyzed. Results: Two to four foramina were observed on the lingual surfaces in the symphysis areas in 27 dry skulls. Among the 52 median foramina, 22 and 21 foramina were identified by observers 1 and 2, respectively. The accuracy, sensitivity, and specificity for the identification of the foramina were 41.1%, 42.3%, and 25.0%, respectively, for observer 1, and 37.5%, 40.4%, and 0.0%, respectively, for observer 2. The interobserver reliability was 0.57 (Kappa value). The readings for the diagnostic films and those for the films with wire insertions showed no agreement, regardless of the observer. Conclusions: Dental radiography revealed the presence of interalveolar foramina in 28 skulls; nonetheless, this result should be interpreted cautiously, as the accuracy was <50%

    The impact of medical institutions on the treatment decisions and outcome of root-resected molars: A retrospective claims analysis from a representative database

    No full text
    Background: This study analyzes the prognostic factors affecting the survival rate of root-resected molars by using a representative population-based dataset. Materials and Methods: A total of 635,216 eligible patients were enrolled from a representative cohort composed of one million of Taiwan′s population. The tooth-related factors influencing the survival rates of root-resected teeth were examined on 516 molars, in 492 patients. Cox regression was performed to statistically analyze the factors. Results: The overall survival rate for the root-resected molars was 91.7%. Of the analyzed factors with respect to root-resection procedures, whether or not concomitant flap surgery was performed in the medical institutions, the dental arch and tooth location demonstrated a considerable influence on the treatment and decision-making. The main reasons and results of root-resected molars receiving root-resection therapy in hospitals were the periodontal-compromised conditions, whereas, the root-resected molars that received root-resection therapy in private practice clinics were caused by caries/endodontic reasons. After adjusting for other factors, in the outcome of root-resected molars, a higher risk of extraction occurrence was seen in hospitals than in private practice clinics (hazard ratio = 2.03; 95% CI = 1.04 to 3.98; P = 0.039). Conclusions: Of the analyzed prognostic factors, medical institutions significantly affect the treatment decision and survival of root-resected molars. Therefore, a comprehensive evaluation, risk assessment, and treatment plan should be executed before the root-resection procedure is performed

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundRegular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations.MethodsThe Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds.FindingsThe leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles.InterpretationLong-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere
    corecore