652 research outputs found

    Cubature on Wiener space in infinite dimension

    Full text link
    We prove a stochastic Taylor expansion for SPDEs and apply this result to obtain cubature methods, i. e. high order weak approximation schemes for SPDEs, in the spirit of T. Lyons and N. Victoir. We can prove a high-order weak convergence for well-defined classes of test functions if the process starts at sufficiently regular initial values. We can also derive analogous results in the presence of L\'evy processes of finite type, here the results seem to be new even in finite dimension. Several numerical examples are added.Comment: revised version, accepted for publication in Proceedings Roy. Soc.

    Dimension-independent Harnack inequalities for subordinated semigroups

    Full text link
    Dimension-independent Harnack inequalities are derived for a class of subordinate semigroups. In particular, for a diffusion satisfying the Bakry-Emery curvature condition, the subordinate semigroup with power α\alpha satisfies a dimension-free Harnack inequality provided α(1/2,1)\alpha \in(1/2, 1), and it satisfies the log-Harnack inequality for all α(0,1).\alpha \in (0,1). Some infinite-dimensional examples are also presented

    Adjoint bi-continuous semigroups and semigroups on the space of measures

    Get PDF
    For a given bi-continuous semigroup T on a Banach space X we define its adjoint on an appropriate closed subspace X^o of the norm dual X'. Under some abstract conditions this adjoint semigroup is again bi-continuous with respect to the weak topology (X^o,X). An application is the following: For K a Polish space we consider operator semigroups on the space C(K) of bounded, continuous functions (endowed with the compact-open topology) and on the space M(K) of bounded Baire measures (endowed with the weak*-topology). We show that bi-continuous semigroups on M(K) are precisely those that are adjoints of a bi-continuous semigroups on C(K). We also prove that the class of bi-continuous semigroups on C(K) with respect to the compact-open topology coincides with the class of equicontinuous semigroups with respect to the strict topology. In general, if K is not Polish space this is not the case

    Smooth stable and unstable manifolds for stochastic partial differential equations

    Full text link
    Invariant manifolds are fundamental tools for describing and understanding nonlinear dynamics. In this paper, we present a theory of stable and unstable manifolds for infinite dimensional random dynamical systems generated by a class of stochastic partial differential equations. We first show the existence of Lipschitz continuous stable and unstable manifolds by the Lyapunov-Perron's method. Then, we prove the smoothness of these invariant manifolds

    Approximating the coefficients in semilinear stochastic partial differential equations

    Get PDF
    We investigate, in the setting of UMD Banach spaces E, the continuous dependence on the data A, F, G and X_0 of mild solutions of semilinear stochastic evolution equations with multiplicative noise of the form dX(t) = [AX(t) + F(t,X(t))]dt + G(t,X(t))dW_H(t), X(0)=X_0, where W_H is a cylindrical Brownian motion on a Hilbert space H. We prove continuous dependence of the compensated solutions X(t)-e^{tA}X_0 in the norms L^p(\Omega;C^\lambda([0,T];E)) assuming that the approximating operators A_n are uniformly sectorial and converge to A in the strong resolvent sense, and that the approximating nonlinearities F_n and G_n are uniformly Lipschitz continuous in suitable norms and converge to F and G pointwise. Our results are applied to a class of semilinear parabolic SPDEs with finite-dimensional multiplicative noise.Comment: Referee's comments have been incorporate

    Statistical properties of stochastic 2D Navier-Stokes equations from linear models

    Full text link
    A new approach to the old-standing problem of the anomaly of the scaling exponents of nonlinear models of turbulence has been proposed and tested through numerical simulations. This is achieved by constructing, for any given nonlinear model, a linear model of passive advection of an auxiliary field whose anomalous scaling exponents are the same as the scaling exponents of the nonlinear problem. In this paper, we investigate this conjecture for the 2D Navier-Stokes equations driven by an additive noise. In order to check this conjecture, we analyze the coupled system Navier-Stokes/linear advection system in the unknowns (u,w)(u,w). We introduce a parameter λ\lambda which gives a system (uλ,wλ)(u^\lambda,w^\lambda); this system is studied for any λ\lambda proving its well posedness and the uniqueness of its invariant measure μλ\mu^\lambda. The key point is that for any λ0\lambda \neq 0 the fields uλu^\lambda and wλw^\lambda have the same scaling exponents, by assuming universality of the scaling exponents to the force. In order to prove the same for the original fields uu and ww, we investigate the limit as λ0\lambda \to 0, proving that μλ\mu^\lambda weakly converges to μ0\mu^0, where μ0\mu^0 is the only invariant measure for the joint system for (u,w)(u,w) when λ=0\lambda=0.Comment: 23 pages; improved versio

    Hamilton Jacobi Bellman equations in infinite dimensions with quadratic and superquadratic Hamiltonian

    Full text link
    We consider Hamilton Jacobi Bellman equations in an inifinite dimensional Hilbert space, with quadratic (respectively superquadratic) hamiltonian and with continuous (respectively lipschitz continuous) final conditions. This allows to study stochastic optimal control problems for suitable controlled Ornstein Uhlenbeck process with unbounded control processes

    Large Deviations for Stochastic Evolution Equations with Small Multiplicative Noise

    Full text link
    The Freidlin-Wentzell large deviation principle is established for the distributions of stochastic evolution equations with general monotone drift and small multiplicative noise. As examples, the main results are applied to derive the large deviation principle for different types of SPDE such as stochastic reaction-diffusion equations, stochastic porous media equations and fast diffusion equations, and the stochastic p-Laplace equation in Hilbert space. The weak convergence approach is employed in the proof to establish the Laplace principle, which is equivalent to the large deviation principle in our framework.Comment: 31 pages, published in Appl. Math. Opti

    Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise II. Fully discrete schemes

    Get PDF
    We present an abstract framework for analyzing the weak error of fully discrete approximation schemes for linear evolution equations driven by additive Gaussian noise. First, an abstract representation formula is derived for sufficiently smooth test functions. The formula is then applied to the wave equation, where the spatial approximation is done via the standard continuous finite element method and the time discretization via an I-stable rational approximation to the exponential function. It is found that the rate of weak convergence is twice that of strong convergence. Furthermore, in contrast to the parabolic case, higher order schemes in time, such as the Crank-Nicolson scheme, are worthwhile to use if the solution is not very regular. Finally we apply the theory to parabolic equations and detail a weak error estimate for the linearized Cahn-Hilliard-Cook equation as well as comment on the stochastic heat equation

    Controllability and Qualitative properties of the solutions to SPDEs driven by boundary L\'evy noise

    Full text link
    Let uu be the solution to the following stochastic evolution equation (1) du(t,x)& = &A u(t,x) dt + B \sigma(u(t,x)) dL(t),\quad t>0; u(0,x) = x taking values in an Hilbert space \HH, where LL is a \RR valued L\'evy process, A:HHA:H\to H an infinitesimal generator of a strongly continuous semigroup, \sigma:H\to \RR bounded from below and Lipschitz continuous, and B:\RR\to H a possible unbounded operator. A typical example of such an equation is a stochastic Partial differential equation with boundary L\'evy noise. Let \CP=(\CP_t)_{t\ge 0} %{\CP_t:0\le t<\infty}thecorrespondingMarkoviansemigroup.Weshowthat,ifthesystem(2)du(t)=Au(t)dt+Bv(t),t>0u(0)=xisapproximatecontrollableintime the corresponding Markovian semigroup. We show that, if the system (2) du(t) = A u(t)\: dt + B v(t),\quad t>0 u(0) = x is approximate controllable in time T>0,thenundersomeadditionalconditionson, then under some additional conditions on Band and A,forany, for any x\in Htheprobabilitymeasure the probability measure \CP_T^\star \delta_xispositiveonopensetsof is positive on open sets of H.Secondly,asanapplication,weinvestigateunderwhichconditionon. Secondly, as an application, we investigate under which condition on %\HHandontheLeˊvyprocess and on the L\'evy process Landontheoperator and on the operator Aand and B$ the solution of Equation [1] is asymptotically strong Feller, respective, has a unique invariant measure. We apply these results to the damped wave equation driven by L\'evy boundary noise
    corecore