5,779 research outputs found

    A molecular line scan in the Hubble Deep Field North

    Get PDF
    We present a molecular line scan in the Hubble Deep Field North (HDF-N) that covers the entire 3mm window (79-115 GHz) using the IRAM Plateau de Bure Interferometer. Our CO redshift coverage spans z2. We reach a CO detection limit that is deep enough to detect essentially all z>1 CO lines reported in the literature so far. We have developed and applied different line searching algorithms, resulting in the discovery of 17 line candidates. We estimate that the rate of false positive line detections is ~2/17. We identify optical/NIR counterparts from the deep ancillary database of the HDF-N for seven of these candidates and investigate their available SEDs. Two secure CO detections in our scan are identified with star-forming galaxies at z=1.784 and at z=2.047. These galaxies have colors consistent with the `BzK' color selection and they show relatively bright CO emission compared with galaxies of similar dust continuum luminosity. We also detect two spectral lines in the submillimeter galaxy HDF850.1 at z=5.183. We consider an additional 9 line candidates as high quality. Our observations also provide a deep 3mm continuum map (1-sigma noise level = 8.6 μJy/beam). Via a stacking approach, we find that optical/MIR bright galaxies contribute only to <50% of the SFR density at 1<z<3, unless high dust temperatures are invoked. The present study represents a first, fundamental step towards an unbiased census of molecular gas in `normal' galaxies at high-z, a crucial goal of extragalactic astronomy in the ALMA era

    Changes in soil fertility and mineral nutrition of mango orchards in São Francisco Valley, Brazil.

    Get PDF
    This research aimed to analyse the soil fertility changes and macronutrient concentration in mango plantations in Petrolina, Pernambuco, Brazil. Samples of soil were collected at depths of 0-20 and 20-40 cm, and leaves of mango trees during vegetative growth were collected from 11 areas with different cultivation time spans (6, 7, 8, 9, 10, 11, 14, 16, 17, 19, and 26 years). Nearby areas under natural vegetation were sampled for reference. The chemical characteristics of soil evaluated were: pH; P, K, Ca, Mg; exchangeable Na and Al; H + Al; organic matter; sum of bases; base saturation; and total cation exchange capacity. The mango leaves were analysed for N, P, K, Ca, and Mg. The agricultural management practices adopted by the mango-producing companies promoted changes in soil fertility when compared with the reference areas. The concentrations of organic matter tended to increase in the crop areas. The organic matter caused increases in CEC and nutrient retention. High P values were observed in soils and plants owing to the excessive use of fertilizers. This may cause nutritional imbalance and contamination of water sources. The contents of N, P, K in the leaves of mango trees were nutritionally adequat

    A unique distant submillimeter galaxy with an X-ray-obscured radio-luminous active galactic nucleus

    Full text link
    We present a multiwavelength study of an atypical submillimeter galaxy in the GOODS-North field, with the aim to understand its physical properties of stellar and dust emission, as well as the central AGN activity. Although it is shown that the source is likely an extremely dusty galaxy at high redshift, its exact position of submillimeter emission is unknown. With the new NOEMA interferometric imaging, we confirm that the source is a unique dusty galaxy. It has no obvious counterpart in the optical and even NIR images observed with HST at lambda~<1.4um. Photometric-redshift analyses from both stellar and dust SED suggest it to likely be at z~>4, though a lower redshift at z~>3.1 cannot be fully ruled out (at 90% confidence interval). Explaining its unusual optical-to-NIR properties requires an old stellar population (~0.67 Gyr), coexisting with a very dusty ongoing starburst component. The latter is contributing to the FIR emission, with its rest-frame UV and optical light being largely obscured along our line of sight. If the observed fluxes at the rest-frame optical/NIR wavelengths were mainly contributed by old stars, a total stellar mass of ~3.5x10^11Msun would be obtained. An X-ray spectral analysis suggests that this galaxy harbors a heavily obscured AGN with N_H=3.3x10^23 cm^-2 and an intrinsic 2-10 keV luminosity of L_X~2.6x10^44 erg/s, which places this object among distant type 2 quasars. The radio emission of the source is extremely bright, which is an order of magnitude higher than the star-formation-powered emission, making it one of the most distant radio-luminous dusty galaxies. The combined characteristics of the galaxy suggest that the source appears to have been caught in a rare but critical transition stage in the evolution of submillimeter galaxies, where we are witnessing the birth of a young AGN and possibly the earliest stage of its jet formation and feedback.Comment: 13 pages in printer format, 10 figures, 1 table, accepted for publication in the A&

    Chemical similarities between Galactic bulge and local thick disk red giant stars

    Get PDF
    The evolution of the Milky Way bulge and its relationship with the other Galactic populations is still poorly understood. The bulge has been suggested to be either a merger-driven classical bulge or the product of a dynamical instability of the inner disk. To probe the star formation history, the initial mass function and stellar nucleosynthesis of the bulge, we performed an elemental abundance analysis of bulge red giant stars. We also completed an identical study of local thin disk, thick disk and halo giants to establish the chemical differences and similarities between the various populations. High-resolution infrared spectra of 19 bulge giants and 49 comparison giants in the solar neighborhood were acquired with Gemini/Phoenix. All stars have similar stellar parameters but cover a broad range in metallicity. A standard 1D local thermodynamic equilibrium analysis yielded the abundances of C, N, O and Fe. A homogeneous and differential analysis of the bulge, halo, thin disk and thick disk stars ensured that systematic errors were minimized. We confirm the well-established differences for [O/Fe] (at a given metallicity) between the local thin and thick disks. For the elements investigated, we find no chemical distinction between the bulge and the local thick disk, which is in contrast to previous studies relying on literature values for disk dwarf stars in the solar neighborhood. Our findings suggest that the bulge and local thick disk experienced similar, but not necessarily shared, chemical evolution histories. We argue that their formation timescales, star formation rates and initial mass functions were similar.Comment: Accepted for publication in A&A, 5 page

    Frictional drag between non-equilibrium charged gases

    Full text link
    The frictional drag force between separated but coupled two-dimensional electron gases of different temperatures is studied using the non-equilibrium Green function method based on the separation of center-of-mass and relative dynamics of electrons. As the mechanisms of producing the frictional force we include the direct Coulomb interaction, the interaction mediated via virtual and real TA and LA phonons, optic phonons, plasmons, and TA and LA phonon-electron collective modes. We found that, when the distance between the two electron gases is large, and at intermediate temperature where plasmons and collective modes play the most important role in the frictional drag, the possibility of having a temperature difference between two subsystems modifies greatly the transresistivity.Comment: 8figure
    corecore