10 research outputs found

    Small secreted proteins enable biofilm development in the cyanobacterium Synechococcus elongatus

    Get PDF
    Small proteins characterized by a double-glycine (GG) secretion motif, typical of secreted bacterial antibiotics, are encoded by the genomes of diverse cyanobacteria, but their functions have not been investigated to date. Using a biofilm-forming mutant of Synechococcus elongatus PCC 7942 and a mutational approach, we demonstrate the involvement of four small secreted proteins and their GG-secretion motifs in biofilm development. These proteins are denoted EbfG1-4 (enable biofilm formation with a GG-motif). Furthermore, the conserved cysteine of the peptidase domain of the Synpcc7942_1133 gene product (dubbed PteB for peptidase transporter essential for biofilm) is crucial for biofilm development and is required for efficient secretion of the GG-motif containing proteins. Transcriptional profiling of ebfG1-4 indicated elevated transcript levels in the biofilm-forming mutant compared to wild type (WT). However, these transcripts decreased, acutely but transiently, when the mutant was cultured in extracellular fluids from a WT culture, and biofilm formation was inhibited. We propose that WT cells secrete inhibitor(s) that suppress transcription of ebfG1-4, whereas secretion of the inhibitor(s) is impaired in the biofilm-forming mutant, leading to synthesis and secretion of EbfG1-4 and supporting the formation of biofilms

    Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries

    No full text
    International audienceOur increasing dependence on lithium-ion batteries for energy storage applications calls for continual performance improvements of their positive electrodes, which have so far relied solely on cationic redox of transition-metal ions for driving the electrochemical reactions. Great hope has recently been placed on the emergence of anionic redox-a transformational approach for designing positive electrodes as it leads to a near-doubling of capacity-hence generating much researc

    Regulating the human HECT E3 ligases

    No full text

    Promise and reality of post-lithium-ion batteries with high energy densities

    No full text
    corecore