6,310 research outputs found
Dispersion and the electron-phonon interaction in a single heterostructure
We investigate the electron-phonon interaction in a polar-polar single heterostructure through the use of the linear combination of hybrid phonon modes, considering the role of longitudinal optical, transverse optical and interface modes, using a continuum model that accounts for both mechanical and electrical continuity over a heterostructure interface. We discuss the use of other models for such systems, such as the bulk phonon (3DP) and dielectric continuum (DC) models, using previously developed sum-rules to explain the limitations on their validity. We find that our linear combination (LC) model gives an excellent agreement with scattering rates previously derived using the 3DP and DC models when the lattice dispersion is weak enough to be ignored, however, when there is a noticeable lattice dispersion, the LC model returns a different answer, suggesting that interface modes play a much greater part in the scattering characteristics of the system under certain conditions. We also discuss the remote phonon effect in polar/polar heterostructures
Macroscopic limits of individual-based models for motile cell populations with volume exclusion
Partial differential equation models are ubiquitous in studies of motile cell populations, giving a phenomenological description of events which can be analyzed and simulated using a wide range of existing tools. However, these models are seldom derived from individual cell behaviors and so it is difficult to accurately include biological hypotheses on this spatial scale. Moreover, studies which do attempt to link individual- and population-level behavior generally employ lattice-based frameworks in which the artifacts of lattice choice at the population level are unclear. In this work we derive limiting population-level descriptions of a motile cell population from an off-lattice, individual-based model (IBM) and investigate the effects of volume exclusion on the population-level dynamics. While motility with excluded volume in on-lattice IBMs can be accurately described by Fickian diffusion, we demonstrate that this is not the case off lattice. We show that the balance between two key parameters in the IBM (the distance moved in one step and the radius of an individual) determines whether volume exclusion results in enhanced or slowed diffusion. The magnitude of this effect is shown to increase with the number of cells and the rate of their movement. The method we describe is extendable to higher-dimensional and more complex systems and thereby provides a framework for deriving biologically realistic, continuum descriptions of motile populations
Hot phonon effects on high field transport in GaN & AlN
We have studied the effects of hot phonons on the high-field transport in GaN & AlN. The dynamics of the non-equilibrium electron-LO phonon system is studied via an ensemble Monte-Carlo code. We find that under steady-state conditions the hot-phonons cause the randomization of the electron momentum and increase their mean energy leading to diffusive heating. Average electron energies of three and two times those in the equilibrium phonon cases are found for GaN and AlN at applied fields of 100 kV/cm and 350 kV/cm respectively. The electron velocity is reduced compared to the case with equilibrium phonons at the lattice temperature. In the transient regime peak velocities reached at overshoot are reduced when non-equilibrium phonons are taken into account
Critical realism, agency and sickle cell: case studies of young people with sickle cell disorder at school
Critical realism suggests that historical structures may operate as underlying generative mechanisms but not always be activated. This explains the near-absence of references to racism by black students with sickle cell disorder (SCD). Through case studies we show how latent mechanisms are not activated, and how social actors come to develop corporate agency. Themes discussed include: wider/historical racisms (carers' own experiences of overt racism at school); conscious actions (moving away from a school where racism was experienced); naming racism as an emergent strategy (when communal discussions enable multiple negative experiences to be framed and named as racism); and `passing` (not ostensibly experiencing racism if one is sufficiently light-skinned). Critical realism suggests how racism may be structuring the experiences of students with SCD at school even in the absence of specific accounts by young people
Hot electron energy relaxation in lattice-matched InAlN/AlN/GaN heterostructures: The sum rules for electron-phonon interactions and hot-phonon effect
Using the dielectric continuum (DC) and three-dimensional phonon (3DP) models, energy relaxation of the hot electrons in the quasi-two-dimensional channel of lattice-matched InAlN/AlN/GaN heterostructures is studied theoretically, taking into account non-equilibrium polar optical phonons, electron degeneracy, and screening from the mobile electrons. The electron power dissipation and energy relaxation time due to both half-space and interface phonons are calculated as functions of the electron temperature Te using a variety of phonon lifetime values from experiment, and then compared with those evaluated by the 3DP model. Thereby particular attention is paid to examination of the 3DP model to use for the hot-electron relaxation study. The 3DP model yields very close results to the DC model: with no hot phonons or screening the power loss calculated from the 3DP model is 5% smaller than the DC power dissipation, whereas slightly larger 3DP power loss (by less than 4% with a phonon lifetime from 0.1 to 1 ps) is obtained throughout the electron temperature range from room temperature to 2500 K after including both the hot-phonon effect (HPE) and screening. Very close results are obtained also for energy relaxation time with the two phonon models (within a 5% of deviation). However the 3DP model is found to underestimate the HPE by 9%. The Mori-Ando sum rule is restored by which it is proved that the power dissipation values obtained from the DC and 3DP models are in general different in the pure phonon emission process, except when scattering with interface phonons is sufficiently weak, or when the degenerate modes condition is imposed, which is also consistent with Register’s scattering rate sum rule. The discrepancy between the DC and 3DP results is found to be caused by how much the high-energy interface phonons contribute to the energy relaxation: their contribution is enhanced in the pure emission process but is dramatically reduced after including the HPE. Our calculation with both phonon models has obtained a great fall in energy relaxation time at low electron temperatures (Te < 750 K) and slow decrease at the high temperatures with the use of decreasing phonon lifetime with Te. The calculated temperature dependence of the relaxation time and the high-temperature relaxation time ∼0.09 ps are in good agreement with experimental results
Momentum relaxation due to polar optical phonons in AlGaN/GaN heterostructures
Using the dielectric continuum (DC) model, momentum relaxation rates are calculated for electrons confined in quasi-two-dimensional (quasi-2D) channels of AlGaN/GaN heterostructures. Particular attention is paid to the effects of half-space and interface modes on the momentum relaxation. The total momentum relaxation rates are compared with those evaluated by the three-dimensional phonon (3DP) model, and also with the Callen results for bulk GaN. In heterostructures with a wide channel (effective channel width >100 Ã…), the DC and 3DP models yield very close momentum relaxation rates. Only for narrow-channel heterostructures do interface phonons become important in momentum relaxation processes, and an abrupt threshold occurs for emission of interface as well as half-space phonons. For a 30-Ã… GaN channel, for instance, the 3DP model is found to underestimate rates just below the bulk phonon energy by 70% and overestimate rates just above the bulk phonon energy by 40% compared to the DC model. Owing to the rapid decrease in the electron-phonon interaction with the phonon wave vector, negative momentum relaxation rates are predicted for interface phonon absorption in usual GaN channels. The total rates remain positive due to the dominant half-space phonon scattering. The quasi-2D rates can have substantially higher peak values than the three-dimensional rates near the phonon emission threshold. Analytical expressions for momentum relaxation rates are obtained in the extreme quantum limits (i.e., the threshold emission and the near subband-bottom absorption). All the results are well explained in terms of electron and phonon densities of states
Narrative as re-fusion: making sense and value from sickle cell and thalassaemia trait
The moral turn within sociology suggests that we need to be attentive to values and have a rapprochement with philosophy. The study of illness narratives is one area of sociology that has consistently addressed itself to moral domains but has tended to focus on stories of living with genetic or chronic illness per se rather than liminal states such as genetic traits. This article takes the case of genetic carriers within racialized minority groups, namely, those with sickle cell or thalassaemia trait, and takes seriously the notion that their narratives are ethical practices. In line with the work of Paul Ricoeur, such storied practices are found to link embodiment, social relationships with significant others and wider socio-cultural and socio-political relations. At the same time, such practices are about embodying values. These narratives may be considered as practices that re-fuse what genetic counselling has de-fused, in order to make sense of a life in its entirety and to strive ethically and collectively towards preferred social realities
Similarity Renormalization, Hamiltonian Flow Equations, and Dyson's Intermediate Representation
A general framework is presented for the renormalization of Hamiltonians via
a similarity transformation. Divergences in the similarity flow equations may
be handled with dimensional regularization in this approach, and the resulting
effective Hamiltonian is finite since states well-separated in energy are
uncoupled. Specific schemes developed several years ago by Glazek and Wilson
and contemporaneously by Wegner correspond to particular choices within this
framework, and the relative merits of such choices are discussed from this
vantage point. It is shown that a scheme for the transformation of Hamiltonians
introduced by Dyson in the early 1950's also corresponds to a particular choice
within the similarity renormalization framework, and it is argued that Dyson's
scheme is preferable to the others for ease of computation. As an example, it
is shown how a logarithmically confining potential arises simply at second
order in light-front QCD within Dyson's scheme, a result found previously for
other similarity renormalization schemes. Steps toward higher order and
nonperturbative calculations are outlined. In particular, a set of equations
analogous to Dyson-Schwinger equations is developed.Comment: REVTex, 32 pages, 7 figures (corrected references
- …