7 research outputs found

    Common Origin of Quasi-Periodic Pulsations in Microwave and Decimetric Solar Radio Bursts

    No full text
    We analyse quasi-periodic pulsations (QPP) detected in the microwave and decimetre radio emission of the 5 May 2017 7:04 UT (SOL2017-09-05T07:04) solar flare, using simultaneous observations by the Siberian Radioheliograph 48 (SRH-48, 4 – 8 GHz) and Mingantu Spectral Radioheliograph (MUSER-I, 0.4 – 2 GHz). The microwave emission was broadband with a typical gyrosynchrotron spectrum, while a quasi-periodic enhancement of the decimetric emission appeared in a narrow spectral band (500 – 700 MHz), consistent with the coherent-plasma-emission mechanism. The periodicity that we found in microwaves is about 30 seconds, coming from a compact loop-like source with a typical height of about 31 Mm. The decimetric emission exhibited a periodicity of about 6 seconds. We suggest a qualitative scenario linking the QPPs observed in both incoherent and coherent spectral bands and their generation mechanisms. The properties of the QPPs found in the microwave signal are typical for perturbations of the flare loop by the standing sausage mode of a fast magnetohydrodynamic (MHD) wave. Our analysis indicated that this sausage-oscillating flare loop was the primary source of oscillations in the discussed event. The suggested scenario is that a fundamental sausage harmonic is the dominant cause for the observed QPPs in the microwave emission. The initiation of oscillations in the decimetric emission is caused by the third sausage harmonic via periodic and nonlinear triggering of the acceleration processes in the current sheets, formed at the interface between the sausage-oscillating flare loop and the external coronal loop that extended to higher altitudes. Our results demonstrate the possible role of MHD wave processes in the release and transport of energy during solar flares, linking coherent and incoherent radio emission mechanisms

    Magnetohydrodynamic Oscillations in the Solar Corona and Earth's Magnetosphere: Towards Consolidated Understanding

    No full text
    © 2016, Springer Science+Business Media Dordrecht. Magnetohydrodynamic (MHD) oscillatory processes in different plasma systems, such as the corona of the Sun and the Earth’s magnetosphere, show interesting similarities and differences, which so far received little attention and remain under-exploited. The successful commissioning within the past ten years of THEMIS, Hinode, STEREO and SDO spacecraft, in combination with matured analysis of data from earlier spacecraft (Wind, SOHO, ACE, Cluster, TRACE and RHESSI) makes it very timely to survey the breadth of observations giving evidence for MHD oscillatory processes in solar and space plasmas, and state-of-the-art theoretical modelling. The paper reviews several important topics, such as Alfvénic resonances and mode conversion; MHD waveguides, such as the magnetotail, coronal loops, coronal streamers; mechanisms for periodicities produced in energy releases during substorms and solar flares, possibility of Alfvénic resonators along open field lines; possible drivers of MHD waves; diagnostics of plasmas with MHD waves; interaction of MHD waves with partly-ionised boundaries (ionosphere and chromosphere). The review is mainly oriented to specialists in magnetospheric physics and solar physics, but not familiar with specifics of the adjacent research fields.status: publishe

    Detection of a giant flare displaying quasi-periodic pulsations from a pre-main-sequence M star by the Next Generation Transit Survey

    Get PDF
    We present the detection of an energetic flare on the pre-main-sequence M3 star NGTS J121939.5–355557, which we estimate to be only 2 Myr old. The flare had an energy of 3.2±0.40.3×1036 erg and a fractional amplitude of 7.2 ± 0.8, making it one of the most energetic flares seen on an M star. The star is also X-ray active, in the saturated regime with log LX/LBol = −3.1. In the flare's peak, we have identified multimode quasi-periodic pulsations formed of two statistically significant periods of approximately 320 and 660 s. This flare is one of the largest amplitude events to exhibit such pulsations. The shorter period mode is observed to start after a short-lived spike in flux lasting around 30 s, which would not have been resolved in Kepler or TESS short-cadence modes. Our data show how the high cadence of the Next Generation Transient Survey (NGTS) can be used to apply solar techniques to stellar flares and to identify potential causes of the observed oscillations. We also discuss the implications of this flare for the habitability of planets around M star hosts and how NGTS can help our understanding of this

    Detection of a giant flare displaying quasi-periodic pulsations from a pre-main sequence M star with NGTS

    Full text link
    We present the detection of an energetic flare on the pre-main-sequence M3 star NGTS J121939.5–355557, which we estimate to be only 2 Myr old. The flare had an energy of 3.2 ±0.4 0.3 ×1036 erg and a fractional amplitude of 7.2 ± 0.8, making it one of the most energetic flares seen on an M star. The star is also X-ray active, in the saturated regime with log LX/LBol = −3.1. In the flare’s peak, we have identified multimode quasi-periodic pulsations formed of two statistically significant periods of approximately 320 and 660 s. This flare is one of the largest amplitude events to exhibit such pulsations. The shorter period mode is observed to start after a short-lived spike in flux lasting around 30 s, which would not have been resolved in Kepler or TESS short-cadence modes. Our data show how the high cadence of the Next Generation Transient Survey (NGTS) can be used to apply solar techniques to stellar flares and to identify potential causes of the observed oscillations. We also discuss the implications of this flare for the habitability of planets around M star hosts and how NGTS can help our understanding of this
    corecore