651 research outputs found

    A modified aeration process for promoting nutrient removal using water hyacinth to treat sewage

    Get PDF
    Author name used in this publication: X. Z. LiAuthor name used in this publication: X. HaoAuthor name used in this publication: D. Y. ZhuAccepted ManuscriptPublishe

    QueryForm: A Simple Zero-shot Form Entity Query Framework

    Full text link
    Zero-shot transfer learning for document understanding is a crucial yet under-investigated scenario to help reduce the high cost involved in annotating document entities. We present a novel query-based framework, QueryForm, that extracts entity values from form-like documents in a zero-shot fashion. QueryForm contains a dual prompting mechanism that composes both the document schema and a specific entity type into a query, which is used to prompt a Transformer model to perform a single entity extraction task. Furthermore, we propose to leverage large-scale query-entity pairs generated from form-like webpages with weak HTML annotations to pre-train QueryForm. By unifying pre-training and fine-tuning into the same query-based framework, QueryForm enables models to learn from structured documents containing various entities and layouts, leading to better generalization to target document types without the need for target-specific training data. QueryForm sets new state-of-the-art average F1 score on both the XFUND (+4.6%~10.1%) and the Payment (+3.2%~9.5%) zero-shot benchmark, with a smaller model size and no additional image input.Comment: Accepted to Findings of ACL 202

    Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets

    Get PDF
    Current genome-wide association studies (GWAS) use commercial genotyping microarrays that can assay over a million single nucleotide polymorphisms (SNPs). The number of SNPs is further boosted by advanced statistical genotype-imputation algorithms and large SNP databases for reference human populations. The testing of a huge number of SNPs needs to be taken into account in the interpretation of statistical significance in such genome-wide studies, but this is complicated by the non-independence of SNPs because of linkage disequilibrium (LD). Several previous groups have proposed the use of the effective number of independent markers (Me) for the adjustment of multiple testing, but current methods of calculation for Me are limited in accuracy or computational speed. Here, we report a more robust and fast method to calculate Me. Applying this efficient method [implemented in a free software tool named Genetic type 1 error calculator (GEC)], we systematically examined the Me, and the corresponding p-value thresholds required to control the genome-wide type 1 error rate at 0.05, for 13 Illumina or Affymetrix genotyping arrays, as well as for HapMap Project and 1000 Genomes Project datasets which are widely used in genotype imputation as reference panels. Our results suggested the use of a p-value threshold of ~10−7 as the criterion for genome-wide significance for early commercial genotyping arrays, but slightly more stringent p-value thresholds ~5 × 10−8 for current or merged commercial genotyping arrays, ~10−8 for all common SNPs in the 1000 Genomes Project dataset and ~5 × 10−8 for the common SNPs only within genes

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Analyses and Comparison of Imputation-Based Association Methods

    Get PDF
    Genotype imputation methods have become increasingly popular for recovering untyped genotype data. An important application with imputed genotypes is to test genetic association for diseases. Imputation-based association test can provide additional insight beyond what is provided by testing on typed tagging SNPs only. A variety of effective imputation-based association tests have been proposed. However, their performances are affected by a variety of genetic factors, which have not been well studied. In this study, using both simulated and real data sets, we investigated the effects of LD, MAF of untyped causal SNP and imputation accuracy rate on the performances of seven popular imputation-based association methods, including MACH2qtl/dat, SNPTEST, ProbABEL, Beagle, Plink, BIMBAM and SNPMStat. We also aimed to provide a comprehensive comparison among methods. Results show that: 1). imputation-based association tests can boost signals and improve power under medium and high LD levels, with the power improvement increasing with strengthening LD level; 2) the power increases with higher MAF of untyped causal SNPs under medium to high LD level; 3). under low LD level, a high imputation accuracy rate cannot guarantee an improvement of power; 4). among methods, MACH2qtl/dat, ProbABEL and SNPTEST perform similarly and they consistently outperform other methods. Our results are helpful in guiding the choice of imputation-based association test in practical application

    Multi-susceptibility genes associated with the risk of the development stages of esophageal squamous cell cancer in Feicheng County

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to evaluate the association of multi-genotype polymorphisms with the stepwise progression of esophageal squamous cell cancer (ESCC) and the possibility of predicting those at higher risk.</p> <p>Methods</p> <p>A total of 1,004 subjects were recruited from Feicheng County, China, between Jan. 2004 and Dec. 2007 and examined by endoscopy for esophageal lesions. These subjects included 270 patients with basal cell hyperplasia (BCH), 262 patients with esophageal squamous cell dysplasia (ESCD), 226 patients with ESCC, and 246 controls with Lugol-voiding area but diagnosed as having normal esophageal squamous epithelial cells by histopathology. The genotypes for <it>CYP2E1 </it>G1259C, <it>hOGG1 </it>C326G, <it>MTHFR </it>C677T, <it>MPO </it>G463A, and <it>ALDH2 </it>allele genes were identified in blood samples collected from all participants.</p> <p>Results</p> <p>The alleles <it>ALDH2 </it>and <it>MTHFR </it>C677T were critical for determining individual susceptibility to esophageal cancer. Compared to the <it>ALDH </it>1*1 genotype, the <it>ALDH </it>2*2 genotype was significantly associated with increased risks of BCH, ESCD, and ESCC. However, the TT genotype of <it>MTHFR </it>C677T only increased the risk of ESCC. Further analysis revealed that the combination of the high-risk genotypes 2*2/1*2 of <it>ALDH </it>2 and TT/TC of <it>MTHFR </it>C677T increased the risk of BCH by 4.0 fold, of ESCD by 3.7 fold, and ESSC by 8.72 fold. The generalized odds ratio (OR<sub>G</sub>) of the two combined genotypes was 1.83 (95%CI: 1.55-2.16), indicating a strong genetic association with the risk of carcinogenic progression in the esophagus.</p> <p>Conclusions</p> <p>The study demonstrated that the genotypes <it>ALDH2*2 </it>and <it>MTHFR </it>677TT conferred elevated risk for developing esophageal carcinoma and that the two susceptibility genotypes combined to synergistically increase the risk.</p
    corecore