27 research outputs found

    The Expanded Kinesin-13 Repertoire of Trypanosomes Contains Only One Mitotic Kinesin Indicating Multiple Extra-Nuclear Roles

    Get PDF
    BACKGROUND: Kinesin-13 proteins have a critical role in animal cell mitosis, during which they regulate spindle microtubule dynamics through their depolymerisation activity. Much of what is known about Kinesin-13 function emanates from a relatively small sub-family of proteins containing MCAK and Kif2A/B. However, recent work on kinesins from the much more widely distributed, ancestral Kinesin-13 family, which includes human Kif24, have identified a second function in flagellum length regulation that may exist either alongside or instead of the mitotic role. METHODOLOGY/PRINCIPAL FINDINGS: The African trypanosome Trypanosoma brucei encodes 7 distinct Kinesin-13 proteins, allowing scope for extensive specialisation of roles. Here, we show that of all the trypanosomal Kinesin-13 proteins, only one is nuclear. This protein, TbKIN13-1, is present in the nucleoplasm throughout the cell cycle, but associates with the spindle during mitosis, which in trypanosomes is closed. TbKIN13-1 is necessary for the segregation of both large and mini-chromosomes in this organism and reduction in TbKIN13-1 levels mediated by RNA interference causes deflects in spindle disassembly with spindle-like structures persisting in non-mitotic cells. A second Kinesin-13 is localised to the flagellum tip, but the majority of the Kinesin-13 family members are in neither of these cellular locations. CONCLUSIONS/SIGNIFICANCE: These data show that the expanded Kinesin-13 repertoire of trypanosomes is not associated with diversification of spindle-associated roles. TbKIN13-1 is required for correct spindle function, but the extra-nuclear localisation of the remaining paralogues suggests that the biological roles of the Kinesin-13 family is wider than previously thought

    The elegans of spindle assembly

    Get PDF
    The Caenorhabditis elegans one-cell embryo is a powerful system in which to study microtubule organization because this large cell assembles both meiotic and mitotic spindles within the same cytoplasm over the course of 1 h in a stereotypical manner. The fertilized oocyte assembles two consecutive acentrosomal meiotic spindles that function to reduce the replicated maternal diploid set of chromosomes to a single-copy haploid set. The resulting maternal DNA then unites with the paternal DNA to form a zygotic diploid complement, around which a centrosome-based mitotic spindle forms. The early C. elegans embryo is amenable to live-cell imaging and electron tomography, permitting a detailed structural comparison of the meiotic and mitotic modes of spindle assembly

    Super-resolution video microscopy of live cells by structured illumination

    No full text
    Structured-illumination microscopy can double the resolution of the wide-field fluorescence microscope, but has previously been too slow for dynamic live imaging. Here we demonstrate a high-speed SIM that is capable of 100 nm resolution at frame rates up to 11 Hz for several hundred time frames. We demonstrate the microscope by video imaging of tubulin and kinesin dynamics in living Drosophila S2 cells in the total internal reflection (TIRF) mode
    corecore