40 research outputs found

    A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk

    Get PDF
    We review the evolution, state of the art and future lines of research on the sources, transport pathways, and sinks of particulate trace elements in urban terrestrial environments to include the atmosphere, soils, and street and indoor dusts. Such studies reveal reductions in the emissions of some elements of historical concern such as Pb, with interest consequently focusing on other toxic trace elements such as As, Cd, Hg, Zn, and Cu. While establishment of levels of these elements is important in assessing the potential impacts of human society on the urban environment, it is also necessary to apply this knowledge in conjunction with information on the toxicity of those trace elements and the degree of exposure of human receptors to an assessment of whether such contamination represents a real risk to the city’s inhabitants and therefore how this risk can be addressed

    A review of igneous and metamorphic saprolites

    No full text
    Major difficulties in ground engineering works in areas of humid climates arise from the internally heterogeneous and erratically varying zones of weathering profiles developed over igneous and metamorphic rocks as a result of dominantly chemical weathering processes. This paper provides a critical review of recent efforts on improving the description and classification of weathering grades, and discusses current conceptual and practical issues and proposed methods for the engineering geological characterisation of igneous and metamorphic saprolites. Analysis of these issues reveals that lack of comprehensive (geochemical, mineralogical, microfabric, and engineering geological) characterisation studies within well-defined geological frameworks is the underlying reason for failure to define, characterise, and model saprolites as complex engineering geological units and to devise specific site investigation methodologies to explore these complexities

    Sources and trends of environmental mercury emissions in Asia

    No full text
    This paper focuses on environmental mercury emissions in Asia and elaborates its probable trend in the future and associated implications given the anticipated socioeconomic outlook and other macro-environmental factors. Among the various regions, Asia has become the largest contributor of anthropogenic atmospheric Hg, responsible for over half of the global emission. In the next few decades, a significant increase in anthropogenic Hg emissions in Asia is likely owing to rapid economic and industrial development, unless drastic measures are taken. In particular, the dominance of Asia in some Hg-emitting industries, such as coal combustion, steel production and gold mining, provokes a serious environmental concern over their potential contributions of incidental Hg in the region. Moreover, the increasing prevalence of electrical and electronic manufacturing industry as a user and a contributor of Hg in Asia is also worrying. Specifically, disposal of obsolete electrical and electronic wastes represents a phenomenon increasingly encountered in Asia. In addition to escalating anthropogenic Hg emissions in Asia, associated environmental and health implications may also exacerbate in the region for the probable effects of a unique combination of climatic (e.g. subtropical climate), environmental (e.g. acid rain) and socioeconomic factors (e.g. high population density). Hence, much effort is still needed to understand the role of Asia in global Hg cycle and associated environmental and health effects in the region

    Residual strength of slip zones of large landslides in the Three Gorges area, China

    No full text
    Slip zones of the large landslides in the Three Gorges area are commonly composed of fine-grained soils with substantial amount of coarse-grained particles, particularly gravel-sized particles. In this study, residual strength of the soils from slip zones of these landslides were examined in relation to their index properties based on a survey of 170 landslides. It was found that laboratory-determined residual friction angle using gravel-free fraction of the disturbed soils from the slip zones was closely related to clay content, liquid limit and plasticity index. On the other hand, in-situ residual friction angle of these soils (i.e. including gravel fraction) showed very weak correlations with clay content and Atterberg limits, but was largely dependent on gravel and fines (clays + silts) contents, increasing with gravels and decreasing with fines, and displayed strong linear correlation with the ratio of gravel to fines contents. These observations indicate that among the index properties, clay content and Atterberg limits can be used to estimate residual strength of the soils finer than 2 mm, but they are not appropriate evaluate the residual strength of the soils containing considerable amount of gravel-sized particles. For the latter, particle size distribution (particularly the ratio of gravel to fines contents) appears to be a useful index. Additionally, it was found that there was no identifiable correlation between relative abundance of individual major clay minerals and residual friction angles of both gravel-free fraction of disturbed and in-situ soils, suggesting that influence of clay minerals on residual strength of these soils can not be simply evaluated based on their abundance.link_to_subscribed_fulltex
    corecore