34 research outputs found

    Genetic diversity of the Chestnut blight fungus Cryphonectria parasitica in four French populations assessed by microsatellite markers

    No full text
    Microsatellites are powerful markers to infer population genetic parameters. Here, 13 microsatellite loci isolated from a genomic and a cDNA library of Cryphonectria parasitica were used to characterize the genetic diversity and structure of four French populations. Twelve of these loci were polymorphic within populations, and average gene diversity (H,) was estimated to be 0.35. There was a lower genetic diversity in a south-eastern population relative to three south-western populations. In these three populations, microsatellite genotypic diversity was higher than vegetative compatibility type diversity. A high genetic differentiation (G(ST) = 0.27) suggested a low gene flow and/or founder effects of French populations which are in agreement with low dispersal of spores and different introductions of this species in southern France. This study demonstrates the significance of these microsatellite loci to assess gene flow and reproductive system in this important pathoge

    Gene flow, historical population dynamics and genetic diversity within French Guianan populations of a rainforest tree species, Vouacapoua americana.

    No full text
    Both gene flow and historical events influence the genetic diversity of natural populations. One way to understand their respective impact is to analyze population genetic structure at large spatial scales. We studied the distribution of genetic diversity of 17 populations of Vouacapoua americana (Caesalpiniaceae) in French Guiana, using nine microsatellite loci. Low genetic diversity was observed within populations, with a mean allelic richness and gene diversity of 4.1 and 0.506, respectively, which could be due to low effective population size and/or past bottlenecks. Using the regression between Fst/(1-Fst), estimated between pairs of populations, and the logarithm of the geographical distance, the spatial genetic structure can partly be explained by isolation-by-distance and limited gene flow among populations. This result is in agreement with the species' biology, including seed and pollen dispersal by rodents and insects, respectively. In contrast, no clear genetic signal of historical events was found when examining genetic differentiation among populations in relation to biogeographical hypotheses or by testing for bottlenecks within populations. Our conclusion is that nuclear spatial genetic structure of V. americana, at the geographic scale of French Guiana, is better explained by gene flow rather than by historical event

    Genetic structure of an expanding Armillaria root rot fungus (Armillaria ostoyae) population in a managed pine forest in southwestern France

    No full text
    The Landes de Gascogne forest (southwestern France) is the largest maritime pine (Pinus pinaster) plantation in Europe. Armillaria root disease (Armillaria ostoyae) has been reported since the early 1920s in the coastal area (western sector), but its incidence over the last 20 years has increased in the eastern sector. We investigated the genetic structure of the A. ostoyae population in this forest, focusing particularly on geographical differentiation potentially indicative of disease expansion in this area. In total, 531 isolates obtained from mycelial fans on symptomatic trees or undecayed stumps in 31 different disease foci were genotyped at five microsatellite loci. In 20 of these disease foci, a single genotype dominated, reflecting a predominantly clonal local spread of A. ostoyae. By contrast, at the regional scale, A. ostoyae probably spreads mostly via basidiospores (sexual spores), as no genotype common to several disease foci was identified. The absence of a clear pattern of isolation by distance may indicate either substantial gene flow or stochastic colonisation independent of spatial distance. The gradient of genetic diversity from the coast inwards and the greater genetic divergence of the eastern disease foci are consistent with the expansion of the A. ostoyae population from the coast eastwards

    Multiple introductions of divergent genetic lineages in an invasive fungal pathogen, Cryphonectria parasitica, in France

    No full text
    The occurrence of multiple introductions may be a crucial factor in the successful establishment of invasive species, but few studies focus on the introduction of fungal pathogens, despite their significant effect on invaded habitats. Although Cryphonectria parasitica, the chestnut blight fungus introduced in North America and Europe from Asia during the 20th century, caused dramatic changes in its new range, the history of its introduction is not well retraced in Europe. Using 10 microsatellite loci, we investigated the genetic diversity of 583 isolates in France, where several introductions have been hypothesized. Our analyses showed that the seven most frequent multilocus genotypes belonged to three genetic lineages, which had a different and geographically limited distribution. These results suggest that different introduction events occurred in France. Genetic recombination was low among these lineages, despite the presence of the two mating types in each chestnut stand analysed. The spatial distribution of lineages suggests that the history of introductions in France associated with the slow expansion of the disease has contributed to the low observed rate of recombination among the divergent lineages. However, we discuss the possibility that environmental conditions or viral interactions could locally reduce recombination among genotypes
    corecore