60 research outputs found

    Optical Anisotropy of Porphyrin Nanocrystals Modified by the Electrochemical Dissolution

    Get PDF
    Reflectance anisotropy spectroscopy (RAS) coupled to an electrochemical cell represents a powerful tool to correlate changes in the surface optical anisotropy to changes in the electrochemical currents related to electrochemical reactions. The high sensitivity of RAS in the range of the absorption bands of organic systems, such as porphyrins, allows us to directly correlate the variations of the optical anisotropy signal to modifications in the solid-state aggregation of the porphyrin molecules. By combining in situ RAS to electrochemical techniques, we studied the case of vacuum-deposited porphyrin nanocrystals, which have been recently observed dissolving through electrochemical oxidation in diluted sulfuric acid. Specifically, we could identify the first stages of the morphological modifications of the nanocrystals, which we could attribute to the single-electron transfers involved in the oxidation reaction; in this sense, the simultaneous variation of the optical anisotropy with the electron transfer acts as a precursor of the dissolution process of porphyrin nanocrystals

    Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

    Get PDF
    Fullerene (C(60)) has been deposited in ultrahigh vacuum on top of a zinc tetraphenylporphyrin (ZnTPP) monolayer self-assembled on a Fe(001)–p(1 × 1)O substrate. The nanoscale morphology and the electronic properties of the C(60)/ZnTPP/Fe(001)–p(1 × 1)O heterostructure have been investigated by scanning tunneling microscopy/spectroscopy and ultraviolet photoemission spectroscopy. C(60) nucleates compact and well-ordered hexagonal domains on top of the ZnTPP buffer layer, suggesting a high surface diffusivity of C(60) and a weak coupling between the overlayer and the substrate. Accordingly, work function measurements reveal a negligible charge transfer at the C(60)/ZnTPP interface. Finally, the difference between the energy of the lowest unoccupied molecular orbital (LUMO) and that of the highest occupied molecular orbital (HOMO) measured on C(60) is about 3.75 eV, a value remarkably higher than those found in fullerene films stabilized directly on metal surfaces. Our results unveil a model system that could be useful in applications in which a quasi-freestanding monolayer of C(60) interfaced with a metallic electrode is required

    Electronic structure and magnetism of strained bcc phases across the fcc to bcc transition in ultrathin Fe films

    Get PDF
    We investigated the electronic structure of the bcc metastable phases involved in the fcc to bcc transition of Fe. Ultrathin Fe films were grown on a 2-monolayer (ML) Ni/W(110) substrate, where a fcc lattice is stabilized at low Fe coverages and the transition proceeds through the formation of bcc nuclei showing a specific "Kurdjumov-Sachs" orientation with the substrate. A comprehensive description of the electronic structure evolution is achieved by combining spin-resolved UV photoemission spectroscopy and ab initio calculations. According to our results, an exchange-split band structure is observed starting from 2 ML of Fe, concomitant with the formation of ferromagnetic bcc nuclei. Continuous modifications are observed in the spin-resolved photoemission spectra for increasing Fe coverage, especially for what concerns the minority states, possibly indicative of the progressive relaxation of the strained bcc phase starting from the bcc/fcc interface
    • …
    corecore