3,730 research outputs found

    Nanotrapping and the thermodynamics of optical tweezers

    Get PDF
    Particles that can be trapped in optical tweezers range from tens of microns down to tens of nanometres in size. Interestingly, this size range includes large macromolecules. We show experimentally, in agreement with theoretical expectations, that optical tweezers can be used to manipulate single molecules of polyethylene oxide suspended in water. The trapped molecules accumulate without aggregating, so this provides optical control of the concentration of macromolecules in solution. Apart from possible applications such as the micromanipulation of nanoparticles, nanoassembly, microchemistry, and the study of biological macromolecules, our results also provide insight into the thermodynamics of optical tweezers.Comment: 5 pages, 3 figures, presented at 17th AIP Congress, Brisbane, 200

    RMS Radio Source Contributions to the Microwave Sky

    Full text link
    Cross-correlations of the WMAP full sky K, Ka, Q, V, and W band maps with the 1.4 GHz NVSS source count map and the HEAO I A2 2-10 keV full sky X-ray flux map are used to constrain rms fluctuations due to unresolved microwave sources in the WMAP frequency range. In the Q band (40.7 GHz), a lower limit, taking account of only those fluctuations correlated with the 1.4 GHz radio source counts and X-ray flux, corresponds to an rms Rayleigh-Jeans temperature of ~ 2 microKelvin for a solid angle of one square degree. The correlated fluctuations at the other bands are consistent with a beta = -2.1 +- 0.4 frequency spectrum. Using the rms fluctuations of the X-ray flux and radio source counts, and the cross-correlation of these two quantities as a guide, the above lower limit leads to a plausible estimate of ~ 5 microKelvin for Q-band rms fluctuations in one square degree. This value is similar to that implied by the excess, small angular scale fluctuations observed in the Q band by WMAP, and is consistent with estimates made by extrapolating low-frquency source counts.Comment: 17 pages, 8 figures, submitted to Ap

    Avian mass immunization for infectious bronchitis and Newcastle disease, Station Bulletin, no.416

    Get PDF
    The Bulletin is a publication of the New Hampshire Agricultural Experiment Station, College of Life Sciences and Agriculture, University of New Hampshire, Durham, New Hampshire

    Early assessment of first year height data from five Acacia mearnsii (black wattle) sub populations in South Africa using REML/BLUP.

    Get PDF
    Recent research has shown, Acacia mearnsii (black wattle) to be a source of high quality pulp. This led to a change in the emphasis in the breeding programme at the Institute for Commercial Forestry Research, from improving bark yield and quality, to improving timber yield and quality while maintaining an acceptable bark quality. A Multiple Population Breeding Strategy was implemented to cater for these changes. Five sub-populations were established across different sites in KwaZulu- Natal and were determined by origin of seed. Each sub-population was established as a progeny trial with a seedling seed orchard adjacent to it. The management of the seed orchards will be determined according to the performance of the families within the progeny trials. This paper reports on the first year height measurements taken from the five sub-populations. The intention of this paper is not to base any selections from this data but rather to establish a set of analyses using REML/BLUP which will be used for future data analysis. This will also allow for future assessment of age-age correlations for the various traits being assessed and provide an appropriate decision-making tool, for selecting individuals for future generations

    Analysis of dynamical tunnelling experiments with a Bose-Einstein condensate

    Get PDF
    Dynamical tunnelling is a quantum phenomenon where a classically forbidden process occurs, that is prohibited not by energy but by another constant of motion. The phenomenon of dynamical tunnelling has been recently observed in a sodium Bose-Einstein condensate. We present a detailed analysis of these experiments using numerical solutions of the three dimensional Gross-Pitaevskii equation and the corresponding Floquet theory. We explore the parameter dependency of the tunnelling oscillations and we move the quantum system towards the classical limit in the experimentally accessible regime.Comment: accepted for publication in Physical Review

    Power-law Parameterized Quintessence Model

    Full text link
    We introduce a power-law parameterized quintessence model for the dark energy which accelerate universe at the low redshifts while behaves as an ordinary matter for the early universe. We construct a unique scalar potential for this parameterized quintessence model. As the observational test, the Supernova Type Ia (SNIa) Gold sample data, size of baryonic acoustic peak from Sloan Digital Sky Survey (SDSS), the position of the acoustic peak from the CMB observations and structure formation from the 2dFGRS survey are used to constrain the parameters of the quintessence model. The best fit parameters indicates that the equation of state of this model at the present time is less than one (w0<−1)(w_0<-1) which violates the energy condition in General Relativity. Finally we compare the age of old objects with age of universe in this model.Comment: 11 pages, 17 figures, submitted to Phys. Rev.

    Measurement of orbital angular momentum in optical tweezers

    Get PDF
    Several techniques have been proposed and used for the rotation or alignment of microparticles in optical tweezers. In every case the optical torque results from the exchange of angular momentum between the beam and the particle, and, in principle, can be measured by purely optical means. Measurement of this torque could be useful for quantitative measurements in biological systems and is required to measure properties such as viscosity of liquids in microlitre (or less) volumes. Although elongated particles will align with the plane of polarisation, the torque efficiency is low, typically about 0.05 hbar per photon. The use of a beam with an elongated focal spot can increase this torque by a factor of 10-20 times, due to the transfer of orbital angular momentum. We report measurements of the orbital component using an analysing (Laguerre-Gauss) hologram. As a proof of principle experiment, an elliptical beam scattered off a glass rod was simulated on a macroscopic scale. The torque was found to be as much as 0.8 hbar per photon. Microscopic elongated objects have been aligned and rotated in optical tweezers and we plan to make measurements of the torques involved. ©2004 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only
    • …
    corecore