670 research outputs found

    Assessment of Coastal Morphological Change

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Tethered subsatellite study

    Get PDF
    The results are presented of studies performed relating to the feasibility of deploying a subsatellite from the shuttle by means of a tether. The dynamics, the control laws, the aerodynamics, the heating, and some communication considerations of the tethered subsatellite system are considered. Nothing was found that prohibits the use of a subsatellite joined to the shuttle by a long (100 km) tether. More detailed studies directed at specific applications are recommended

    Variability in Long-Wave Runup as a Function of Nearshore Bathymetric Features

    Get PDF
    Beaches and barrier islands are vulnerable to extreme storm events, such as hurricanes, that can cause severe erosion and overwash to the system. Having dunes and a wide beach in front of coastal infrastructure can provide protection during a storm, but the influence that nearshore bathymetric features have in protecting the beach and barrier island system is not completely understood. The spatial variation in nearshore features, such as sand bars and beach cusps, can alter nearshore hydrodynamics, including wave setup and runup. The influence of bathymetric features on long-wave runup can be used in evaluating the vulnerability of coastal regions to erosion and dune overtopping, evaluating the changing morphology, and implementing plans to protect infrastructure. In this thesis, long-wave runup variation due to changing bathymetric features as determined with the numerical model XBeach is quantified (eXtreme Beach behavior model). Wave heights are analyzed to determine the energy through the surfzone. XBeach assumes that coastal erosion at the land-sea interface is dominated by bound long-wave processes. Several hydrodynamic conditions are used to force the numerical model. The XBeach simulation results suggest that bathymetric irregularity induces significant changes in the extreme long-wave runup at the beach and the energy indicator through the surfzone

    A Keplerian Disk around the Herbig Ae star HD169142

    Full text link
    We present Submillimeter Array observations of the Herbig Ae star HD169142 in 1.3 millimeter continuum emission and 12CO J=2-1 line emission at 1.5 arcsecond resolution that reveal a circumstellar disk. The continuum emission is centered on the star position and resolved, and provides a mass estimate of about 0.02 solar masses for the disk. The CO images show patterns in position and velocity that are well matched by a disk in Keplerian rotation with low inclination to the line-of-sight. We use radiative transfer calculations based on a flared, passive disk model to constrain the disk parameters by comparison to the spectral line emission. The derived disk radius is 235 AU, and the inclination is 13 degrees. The model also necessitates modest depletion of the CO molecules, similar to that found in Keplerian disks around T Tauri stars.Comment: 10 pages, 2 figures, accepted by A

    Particle detection through the quantum counter concept in YAG:Er3+^{3+}

    Get PDF
    We report about a novel scheme for particle detection based on the infrared quantum counter concept. Its operation consists of a two-step excitation process of a four level system, that can be realized in rare earth-doped crystals when a cw pump laser is tuned to the transition from the second to the fourth level. The incident particle raises the atoms of the active material into a low lying, metastable energy state, triggering the absorption of the pump laser to a higher level. Following a rapid non-radiative decay to a fluorescent level, an optical signal is observed with a conventional detectors. In order to demonstrate the feasibility of such a scheme, we have investigated the emission from the fluorescent level 4^4S3/2_{3/2} (540 nm band) in an Er3+^{3+}-doped YAG crystal pumped by a tunable titanium sapphire laser when it is irradiated with 60 keV electrons delivered by an electron gun. We have obtained a clear signature this excitation increases the 4I13/2^{4}I_{13/2} metastable level population that can efficiently be exploited to generate a detectable optical signal

    Commercial-off-the-shelf simulation package interoperability: Issues and futures

    Get PDF
    Commercial-Off-The-Shelf Simulation Packages (CSPs) are widely used in industry to simulate discrete-event models. Interoperability of CSPs requires the use of distributed simulation techniques. Literature presents us with many examples of achieving CSP interoperability using bespoke solutions. However, for the wider adoption of CSP-based distributed simulation it is essential that, first and foremost, a standard for CSP interoperability be created, and secondly, these standards are adhered to by the CSP vendors. This advanced tutorial is on an emerging standard relating to CSP interoperability. It gives an overview of this standard and presents case studies that implement some of the proposed standards. Furthermore, interoperability is discussed in relation to large and complex models developed using CSPs that require large amount of computing resources. It is hoped that this tutorial will inform the simulation community of the issues associated with CSP interoperability, the importance of these standards and its future

    Could the Ultra Metal-poor Stars be Chemically Peculiar and Not Related to the First Stars?

    Get PDF
    Chemically peculiar stars define a class of stars that show unusual elemental abundances due to stellar photospheric effects and not due to natal variations. In this paper, we compare the elemental abundance patterns of the ultra metal-poor stars with metallicities [Fe/H] 5\sim -5 to those of a subclass of chemically peculiar stars. These include post-AGB stars, RV Tauri variable stars, and the Lambda Bootis stars, which range in mass, age, binarity, and evolutionary status, yet can have iron abundance determinations as low as [Fe/H] 5\sim -5. These chemical peculiarities are interpreted as due to the separation of gas and dust beyond the stellar surface, followed by the accretion of dust depleted-gas. Contrary to this, the elemental abundances in the ultra metal-poor stars are thought to represent yields of the most metal-poor supernova and, therefore, observationally constrain the earliest stages of chemical evolution in the Universe. The abundance of the elements in the photospheres of the ultra metal-poor stars appear to be related to the condensation temperature of that element; if so, then their CNO abundances suggest true metallicities of [X/H]~ -2 to -4, rather than their present metallicities of [Fe/H] < -5.Comment: Accepted for ApJ. 17 pages, 10 figure

    Comparative and Cumulative Energetic Costs of Odontocete Responses to Anthropogenic Disturbance

    Get PDF
    Odontocetes respond to vessels and anthropogenic noise by modifying vocal behavior, surface active behaviors, dive patterns, swim speed, direction of travel, and activity budgets. Exposure scenarios and behavioral responses vary across odontocetes. A literature review was conducted to determine relevant sources of disturbance and associated behavioral responses for several odontocete species (bottlenose dolphin, killer whale, harbor porpoise, and beaked whales). The energetic costs of species-specific responses to anthropogenic disturbance were then estimated. The energetic impact varies across species and scenarios as well as by behavioral responses. Overall, the cumulative energetic cost of ephemeral behavioral responses (e.g., performing surface active behaviors, modifying acoustic signals) and modifying swim speeds and activity budgets likely increases daily energy expenditure by ≤4%. In contrast, the reduction in foraging activity in the presence of vessels and/or exposure to sonar has the potential to significantly reduce individuals’ daily energy acquisition. Indeed, across all odontocete species, decreased energy acquisition as a result of reduced foraging undoubtedly has a larger impact on individuals than the increased energy expenditure associated with behavioral modification. This work provides a powerful tool to investigate the biological significance of multiple behavioral responses that are likely to occur in response to anthropogenic disturbance

    Dust Migration and Morphology in Optically Thin Circumstellar Gas Disks

    Get PDF
    We analyze the dynamics of gas-dust coupling in the presence of stellar radiation pressure in circumstellar gas disks, which are in a transitional stage between the gas-dominated, optically thick, primordial nebulae, and the dust-dominated, optically thin Vega-type disks. Dust undergo radial migration, seeking a stable equilibrium orbit in corotation with gas. The migration of dust gives rise to radial fractionation of dust and creates a variety of possible observed disk morphologies, which we compute by considering the equilibrium between the dust production and the dust-dust collisions removing particles from their equilibrium orbits. Sand-sized and larger grains are distributed throughout most of the gas disk, with concentration near the gas pressure maximum in the inner disk. Smaller grains (typically in the range of 10 to 200 micron) concentrate in a prominent ring structure in the outer region of the gas disk (presumably at radius 100 AU), where gas density is rapidly declining with radius. The width and density, as well as density contrast of the dust ring with respect to the inner dust disk depend on the distribution of gas. Our results open the prospect for deducing the distribution of gas in circumstellar disks by observing their dust. We have qualitatively compared our models with two observed transitional disks around HR 4796A and HD 141569A. Dust migration can result in observation of a ring or a bimodal radial dust distribution, possibly very similar to the ones produced by gap-opening planet(s) embedded in the disk, or shepherding it from inside or outside. We conclude that a convincing planet detection via dust imaging should include specific non-axisymmetric structure following from the dynamical simulations of perturbed disks.Comment: 27 pages, 16 figures, submitted to Ap

    Cold Disks: Spitzer Spectroscopy of Disks around Young Stars with Large Gaps

    Get PDF
    We have identified four circumstellar disks with a deficit of dust emission from their inner 15-50 AU. All four stars have F-G spectral type, and were uncovered as part of the Spitzer Space Telescope ``Cores to Disks'' Legacy Program Infrared Spectrograph (IRS) first look survey of ~100 pre-main sequence stars. Modeling of the spectral energy distributions indicates a reduction in dust density by factors of 100-1000 from disk radii between ~0.4 and 15-50 AU, but with massive gas-rich disks at larger radii. This large contrast between the inner and outer disk has led us to use the term `cold disks' to distinguish these unusual systems. However, hot dust [0.02-0.2 Mmoon] is still present close to the central star (R ~0.8 AU). We introduce the 30/13 micron, flux density ratio as a new diagnostic for identifying cold disks. The mechanisms for dust clearing over such large gaps are discussed. Though rare, cold disks are likely in transition from an optically thick to an optically thin state, and so offer excellent laboratories for the study of planet formation.Comment: 13 pages, 3 figures, accepted to ApJ
    corecore