21,315 research outputs found
How effective are crop rotations?
Non-Peer ReviewedCurrent crop rotation recommendations suggest at least 3 non-susceptible crops be grown between planting of Sclerotinia susceptible crops such as canola and pea. However current pricing of pea and canola make production of these crops more profitable providing their yields are not greatly reduced by disease. Under center pivot irrigation the soil surface and plants are wetted every 2-4 days during periods
of high water use; this results in a good environment for spore production and germination. Levels of Sclerotinia infection were generally somewhat lower than predicted by the petal test method. Yields were not improved by the application of iprodione at 250, 500 or 700 g/ha at the 40% bloom stage. The yield levels obtained and visual observation of time and severity of stem damage indicated that the disease probably occurred late enough in the season to limit damage. No lodging occurred and Sclerotinia levels were near zero in 1991 as a result of a very hot dry August. In 1992, 2 of 3 tests showed significant lodging. Sclerotinia levels increased with an increase in lodging (r2 = 0.85* and 0.73*). Lodging reduction can be
accomplished by the use of resistant cultivars and by lowering seeding rates to less than 100 seeds/m2. Yields were not reduced at lower seeding rates at wider row spacings. Sclerotinia is an environmentally influenced disease which is not well controlled by crop rotations up to 5 years however its severity can be limited by reducing lodging. When canola prices are at least 1.9 times that of cereal grains, shortening rotations to 2-3 years between crops, such as pea and canola, could be a viable risk
Investigating the noise residuals around the gravitational wave event GW150914
We use the Pearson cross-correlation statistic proposed by Liu and Jackson,
and employed by Creswell et al., to look for statistically significant
correlations between the LIGO Hanford and Livingston detectors at the time of
the binary black hole merger GW150914. We compute this statistic for the
calibrated strain data released by LIGO, using both the residuals provided by
LIGO and using our own subtraction of a maximum-likelihood waveform that is
constructed to model binary black hole mergers in general relativity. To assign
a significance to the values obtained, we calculate the cross-correlation of
both simulated Gaussian noise and data from the LIGO detectors at times during
which no detection of gravitational waves has been claimed. We find that after
subtracting the maximum likelihood waveform there are no statistically
significant correlations between the residuals of the two detectors at the time
of GW150914.Comment: 14 pages, 7 figures. Minor text and figure changes in final v3.
Notebooks for generating the results are available at
https://github.com/gwastro/gw150914_investigatio
Using the INSPIRAL program to search for gravitational waves from low-mass binary inspiral
The INSPIRAL program is the LIGO Scientific Collaboration's computational
engine for the search for gravitational waves from binary neutron stars and
sub-solar mass black holes. We describe how this program, which makes use of
the FINDCHIRP algorithm (discussed in a companion paper), is integrated into a
sophisticated data analysis pipeline that was used in the search for low-mass
binary inspirals in data taken during the second LIGO science run.Comment: 11 pages, 3 figures, submitted to Classical and Quantum Gravity for
the special issue of the GWDAW9 Proceeding
Limits on the Boron Isotopic Ratio in HD 76932
Data in the 2090 A B region of HD 76932 have been obtained at high S/N using
the HST GHRS echelle at a resolution of 90,000. This wavelength region has been
previously identified as a likely candidate for observing the B11/B10 isotopic
splitting.
The observations do not match a calculated line profile extremely well at any
abundance for any isotopic ratio. If the B abundance previously determined from
observations at 2500 A is assumed, the calculated line profile is too weak,
indicating a possible blending line. Assuming that the absorption at 2090 A is
entirely due to boron, the best-fit total B abundance is higher than but
consistent with that obtained at 2500 A, and the best-fit isotopic ratio
(B11/B10) is in the range ~10:1 to ~4:1. If the absorption is not entirely due
to B and there is an unknown blend, the best-fit isotopic ratio may be closer
to 1:1. Future observations of a similar metal-poor star known to have
unusually low B should allow us to distinguish between these two possibilities.
The constraints that can be placed on the isotopic ratio based on comparisons
with similar observations of HD 102870 and HD 61421 (Procyon) are also
discussed.Comment: Accepted for Nov 1998 Ap
A novel method of supplying nutrients permits predictable shoot growth and root: shoot ratios of pre-transplant bedding plants
BACKGROUND AND AIMS: Growth of bedding plants, in small peat plugs, relies on nutrients in the irrigation solution. The object of the study was to find a way of modifying the nutrient supply so that good-quality seedlings can be grown rapidly and yet have the high root : shoot ratios essential for efficient transplanting.
METHODS: A new procedure was devised in which the concentrations of nutrients in the irrigation solution were modified during growth according to changing plant demand, instead of maintaining the same concentrations throughout growth. The new procedure depends on published algorithms for the dependence of growth rate and optimal plant nutrient concentrations on shoot dry weight Ws (g m–2), and on measuring evapotranspiration rates and shoot dry weights at weekly intervals. Pansy, Viola tricola ‘Universal plus yellow’ and petunia, Petunia hybrida ‘Multiflora light salmon vein’ were grown in four independent experiments with the expected optimum nutrient concentration and fractions of the optimum. Root and shoot weights were measured during growth.
KEY RESULTS: For each level of nutrient supply Ws increased with time (t) in days, according to the equation {Delta}Ws/{Delta}t=K2Ws/(100+Ws) in which the growth rate coefficient (K2) remained approximately constant throughout growth. The value of K2 for the optimum treatment was defined by incoming radiation and temperature. The value of K2 for each sub-optimum treatment relative to that for the optimum treatment was logarithmically related to the sub-optimal nutrient supply. Provided the aerial environment was optimal, Rsb/Ro{approx}Wo/Wsb where R is the root : shoot ratio, W is the shoot dry weight, and sb and o indicate sub-optimum and optimum nutrient supplies, respectively. Sub-optimal nutrient concentrations also depressed shoot growth without appreciably affecting root growth when the aerial environment was non-limiting.
CONCLUSION: The new procedure can predict the effects of nutrient supply, incoming radiation and temperature on the time course of shoot growth and the root : shoot ratio for a range of growing conditions
Radio Observations of the Supernova Remnant Candidate G312.5-3.0
The radio images from the Parkes-MIT-NRAO (PMN) Southern Sky Survey at 4850
MHz have revealed a number of previously unknown radio sources. One such
source, G312.5-3.0 (PMN J1421-6415), has been observed using the
multi-frequency capabilities of the Australia Telescope Compact Array (ATCA) at
frequencies of 1380 MHz and 2378 MHz. Further observations of the source were
made using the Molonglo Observatory Synthesis Telescope (MOST) at a frequency
of 843 MHz. The source has an angular size of 18 arcmin and has a distinct
shell structure. We present the reduced multi-frequency observations of this
source and provide a brief argument for its possible identification as a
supernova remnant.Comment: 5 pages, 5 figures, Accepted for publication in MNRA
Fast spectroscopic variations on rapidly-rotating, cool dwarfs. 3: Masses of circumstellar absorbing clouds on AB Doradus
New time-resolved H alpha, Ca II H and K and Mg II h and k spectra of the rapidly-rotating K0 dwarf star AB Doradus (= HD 36705). The transient absorption features seen in the H alpha line are also present in the Ca II and Mg II resonance lines. New techniques are developed for measuring the average strength of the line absorption along lines of sight intersecting the cloud. These techniques also give a measure of the projected cloud area. The strength of the resonance line absorption provides useful new constraints on the column densities, projected surface areas, temperatures and internal turbulent velocity dispersions of the circumstellar clouds producing the absorption features. At any given time the star appears to be surrounded by at least 6 to 10 clouds with masses in the range 2 to 6 x 10(exp 17) g. The clouds appear to have turbulent internal velocity dispersions of order 3 to 20 km/s, comparable with the random velocities of discrete filamentary structures in solar quiescent prominences. Night-to-night changes in the amount of Ca II resonance line absorption can be explained by changes in the amplitude of turbulent motions in the clouds. The corresponding changes in the total energy of the internal motions are of order 10(exp 29) erg per cloud. Changes of this magnitude could easily be activated by the frequent energetic (approximately 10(exp 34) erg) x ray flares seen on this star
- …