270 research outputs found

    Le nouveau droit du mariage-une revolution a Froid...ses origines jusnaturalistes-ses principes axiologiques

    Get PDF
    «11 faut par ailleurs dépasser le mentalité selon laquelle l'honneur de la femme vient devantage du travail a l'exterieur que de 1 'activité familiale» 56

    La religion de Savigny

    Get PDF

    Savigny y el pensamiento del siglo XVIII

    Get PDF

    In memoriam Michel Villey

    Get PDF

    Equivalency of risk for a modified health endpoint: a case from recreational water epidemiology studies

    Get PDF
    BACKGROUND: The United States Environmental Protection Agency (USEPA) and its predecessors have conducted three distinct series of epidemiological studies beginning in 1948 on the relationship between bathing water quality and swimmers’ illnesses. Keeping pace with advances in microbial technologies, these studies differed in their respective microbial indicators of water quality. Another difference, however, has been their specific health endpoints. The latest round of studies, the National Epidemiological Assessment of Recreational (NEEAR) Water studies initiated in 2002, used a case definition, termed “NEEAR GI illness” (NGI), for gastrointestinal illness corresponding closely to classifications employed by contemporary researchers, and to that proposed by the World Health Organization. NGI differed from the previous definition of “highly credible gastrointestinal illness” (HCGI) upon which the USEPA’s 1986 bathing water criteria had been based, primarily by excluding fever as a prerequisite. METHODS: Incidence of NGI from the NEEAR studies was compared to that of HCGI from earlier studies. Markov chain Monte Carlo method was used to estimate the respective beta binomial probability densities for NGI and HCGI establish credible intervals for the risk ratio of NGI to HCGI. RESULTS: The ratio of NGI risk to that of HCGI is estimated to be 4.5 with a credible interval 3.2 to 7.7. CONCLUSIONS: A risk level of 8 HCGI illnesses per 1000 swimmers, as in the 1986 freshwater criteria, would correspond to 36 NGI illnesses per 1000 swimmers. Given a microbial DNA-based (qPCR) water quality vs. risk relationship developed from the NEEAR studies, 36 NGI per 1000 corresponds to a geometric mean of 475 qPCR cell-equivalents per 100 ml

    Rapidly Measured Indicators of Recreational Water Quality Are Predictive of Swimming-Associated Gastrointestinal Illness

    Get PDF
    Standard methods to measure recreational water quality require at least 24 hr to obtain results, making it impossible to assess the quality of water within a single day. Methods to measure recreational water quality in ≀ 2 hr have been developed. Application of rapid methods could give considerably more accurate and timely assessments of recreational water quality. We conducted a prospective study of beachgoers at two Great Lakes beaches to examine the association between recreational water quality, obtained using rapid methods, and gastrointestinal (GI) illness after swimming. Beachgoers were asked about swimming and other beach activities and 10–12 days later were asked about the occurrence of GI symptoms. We tested water samples for Enterococcus and Bacteroides species using the quantitative polymerase chain reaction (PCR) method. We observed significant trends between increased GI illness and Enterococcus at the Lake Michigan beach and a positive trend for Enterococcus at the Lake Erie beach. The association remained significant for Enterococcus when the two beaches were combined. We observed a positive trend for Bacteroides at the Lake Erie beach, but no trend was observed at the Lake Michigan beach. Enterococcus samples collected at 0800 hr were predictive of GI illness that day. The association between Enterococcus and illness strengthened as time spent swimming in the water increased. This is the first study to show that water quality measured by rapid methods can predict swimming-associated health effects

    A Prospective Study of Marine Phytoplankton and Reported Illness Among Recreational Beachgoers in Puerto Rico, 2009

    Get PDF
    Background:Blooms of marine phytoplankton may adversely affect human health. The potential public health impact of low-level exposures is not well established, and few prospective cohort studies of recreational exposures to marine phytoplankton have been conducted.Objective:We evaluated the association between phytoplankton cell counts and subsequent illness among recreational beachgoers.Methods:We recruited beachgoers at BoquerĂłn Beach, Puerto Rico, during the summer of 2009. We conducted interviews at three time points to assess baseline health, water activities, and subsequent illness. Daily water samples were quantitatively assayed for phytoplankton cell count. Logistic regression models, adjusted for age and sex, were used to assess the association between exposure to three categories of phytoplankton concentration and subsequent illness.Results:During 26 study days, 15,726 individuals successfully completed all three interviews. Daily total phytoplankton cell counts ranged from 346 to 2,012 cells/mL (median, 712 cells/mL). The category with the highest (≄ 75th percentile) total phytoplankton cell count was associated with eye irritation [adjusted odds ratio (OR) = 1.30; 95% confidence interval (CI): 1.01, 1.66], rash (OR = 1.27; 95% CI: 1.02, 1.57), and earache (OR = 1.25; 95% CI: 0.88, 1.77). In phytoplankton group-specific analyses, the category with the highest Cyanobacteria counts was associated with respiratory illness (OR = 1.37; 95% CI: 1.12, 1.67), rash (OR = 1.32; 95% CI: 1.05, 1.66), eye irritation (OR = 1.25; 95% CI: 0.97, 1.62), and earache (OR = 1.35; 95% CI: 0.95, 1.93).Conclusions:We found associations between recreational exposure to marine phytoplankton and reports of eye irritation, respiratory illness, and rash. We also found that associations varied by phytoplankton group, with Cyanobacteria having the strongest and most consistent associations.Citation:Lin CJ, Wade TJ, Sams EA, Dufour AP, Chapman AD, Hilborn ED. 2016. A prospective study of marine phytoplankton and reported illness among recreational beachgoers in Puerto Rico, 2009. Environ Health Perspect 124:477–483; http://dx.doi.org/10.1289/ehp.140955

    Fecal Indicators in Sand, Sand Contact, and Risk of Enteric Illness Among Beachgoers

    Get PDF
    Beach sand can harbor fecal indicator organisms and pathogens, but enteric illness risk associated with sand contact remains unclear

    Water quality, weather and environmental factors associated with fecal indicator organism density in beach sand at two recreational marine beaches

    Get PDF
    Recent studies showing an association between fecal indicator organisms (FIOs) in sand and gastrointestinal (GI) illness among beachgoers with sand contact have important public health implications because of the large numbers of people who recreate at beaches and engage in sand contact activities. Yet, factors that influence fecal pollution in beach sand remain unclear. During the 2007 National Epidemiological and Environmental Assessment of Recreational (NEEAR) Water Study, sand samples were collected at three locations (60 m apart) on weekend days (Sat, Sun) and holidays between June and September at two marine beaches — Fairhope Beach, AL and Goddard Beach, RI — with nearby publicly-owned treatment works (POTWs) outfalls. F+ coliphage, enterococci, Bacteroidales, fecal Bacteroides spp., and Clostridium spp. were measured in sand using culture and qPCR-based calibrator-cell equivalent methods. Water samples were also collected on the same days, times and transects as the 144 sand samples and were assayed using the same FIO measurements. Weather and environmental data were collected at the time of sample collection. Mean FIO concentrations in sand varied over time, but not space. Enterococci CFU and CCE densities in sand were not correlated, although other FIOs in sand were. The strongest correlation between FIO density in sand and water was fecal Bacteroides CCE, followed by enterococci CFU, Clostridium spp. CCE, and Bacteroidales CCE. Overall, the factors associated with FIO concentrations in sand were related to the sand–water interface (i.e., sand-wetting) and included daily average densities of FIOs in water, rainfall, and wave height. Targeted monitoring that focuses on daily trends of sand FIO variability, combined with information about specific water quality, weather, and environmental factors may inform beach monitoring and management decisions to reduce microbial burdens in beach sand
    • 

    corecore