11,241 research outputs found

    Numerical simulations of granular media composed with irregular polyhedral particles: effect of particles’ angularity

    Get PDF
    We use contact dynamic simulations to perform a systematic investigation of the effects of particles shape angularity on mechanicals response in sheared granular materials. The particles are irregular polyhedra with varying numbers of face from spheres to “double pyramid” shape with a constant aspect ratio. We study the quasi-static behavior, structural and force anisotropies of several packings subjected to triaxial compression. An interesting finding is that the shear strength first increases with angularity up to a maximum value and then saturates as the particles become more angular. Analyzing the anisotropies induced by the angular distributions of contacts and forces orientations, we show that the saturation of the shear strength at higher angularities is a consequence of fall-off of the texture anisotropies compensated by an increase of the tangential force anisotropy. This is attributed to the fact that at higher angularity, particles are better connected (or surrounded) leading to an increase of friction mobilization in order to achieve the deformation. Moreover, the most angular particles also have very few sides so that, this effect is enhanced by the increase of the proportion of face-side and side-side contacts with angularity

    Geometric aspects of HF driven Langmuir turbulence in the ionosphere

    No full text
    International audienceThe geometric aspects of HF-generated Langmuir turbulence in the ionosphere and its detection by radars are theoretically discussed in a broad approach, including local modelling (damped and driven Zakharov system), basic parametric instabilities, polarization and strength of the driving electric field, and radar configurations. Selected examples of numerical results from the local model are presented and discussed in relation to recent experiments, with emphasis on recent experiments at the EISCAT facilities. Anisotropic aspects of the cavitation process in the magnetized plasma are exhibited. Basic processes of cascades and cavitation are by now well identified in these experiments, but a few problems of the detailed agreement between theory and experiments are pointed out

    AMBER on the VLTI: data processing and calibration issues

    Get PDF
    We present here the current performances of the AMBER / VLTI instrument for standard use and compare these with the offered modes of the instrument. We show that the instrument is able to reach its specified precision only for medium and high spectral resolution modes, differential observables and bright objects. For absolute observables, the current achievable accuracy is strongly limited by the vibrations of the Unit Telescopes, and also by the observing procedure which does not take into account the night-long transfer function monitoring. For low-resolution mode, the current limitation is more in the data reduction side, since several effects negligible at medium spectral resolution are not taken into account in the current pipeline. Finally, for faint objects (SNR around 1 per spectral channel), electromagnetic interferences in the VLTI interferometric laboratory with the detector electronics prevents currently to get unbiased measurements. Ideas are under study to correct in the data processing side this effect, but a hardware fix should be investigated seriously since it limits seriously the effective limiting magnitude of the instrument.Comment: 10 page

    Risk and Business Goal Based Security Requirement and Countermeasure Prioritization

    Get PDF
    Companies are under pressure to be in control of their assets but at the same time they must operate as efficiently as possible. This means that they aim to implement “good-enough security” but need to be able to justify their security investment plans. Currently companies achieve this by means of checklist-based security assessments, but these methods are a way to achieve consensus without being able to provide justifications of countermeasures in terms of business goals. But such justifications are needed to operate securely and effectively in networked businesses. In this paper, we first compare a Risk-Based Requirements Prioritization method (RiskREP) with some requirements engineering and risk assessment methods based on their requirements elicitation and prioritization properties. RiskREP extends misuse case-based requirements engineering methods with IT architecture-based risk assessment and countermeasure definition and prioritization. Then, we present how RiskREP prioritizes countermeasures by linking business goals to countermeasure specification. Prioritizing countermeasures based on business goals is especially important to provide the stakeholders with structured arguments for choosing a set of countermeasures to implement. We illustrate RiskREP and how it prioritizes the countermeasures it elicits by an application to an action case

    Force chains and contact network topology in packings of elongated particles

    Full text link
    By means of contact dynamic simulations, we investigate the contact network topology and force chains in two-dimensional packings of elongated particles modeled by rounded-cap rectangles. The morphology of large packings of elongated particles in quasistatic equilibrium is complex due to the combined effects of local nematic ordering of the particles and orientations of contacts between particles. We show that particle elongation affects force distributions and force/fabric anisotropy via various local structures allowed by steric exclusions and the requirement of force balance. As a result, the force distributions become increasingly broader as particles become more elongated. Interestingly, the weak force network transforms from a passive stabilizing agent with respect to strong force chains to an active force-transmitting network for the whole system. The strongest force chains are carried by side/side contacts oriented along the principal stress direction.Comment: Soumis a Physical Review

    Structural basis for map formation in the thalamocortical pathway of the barrelless mouse

    Get PDF
    Barrelless mice (BRL) homozygous for the BRL mutation that disrupts the gene coding for adenylyl cyclase type I on chromosome 11 lack spatial segregation of layer IV cortical cells and of the thalamocortical axons (TCAs) into barrel domains. Despite these morphological perturbations, a functional topographic map has been demonstrated. We reconstructed individual biocytin-injected TCAs from thalamus to barrel cortex in NOR (normal) and BRL mice to analyze to what extent the TCA arborization pattern and bouton distribution could explain the topographic representation of the whisker follicles. In BRL, the geometry of TCA is modified within layer IV as well as in infragranular layers. However, in both strains, the spatial distribution of TCA in layer IV reflects the spatial relationship of their cell bodies in the ventrobasal nucleus of the thalamus. The morphometric analysis revealed that TCAs of both strains have the same length, branch number, and number of axonal boutons in layer IV. However, in barrelless, the boutons are distributed within a larger tangential extent. Analysis of the distribution of boutons from neighboring thalamic neurons demonstrated the existence in layer IV of domains of high bouton density that in both strains equal the size and shape of individual barrels. We propose that the domains of high bouton density are at the basis of the whisker map in barrelless mice

    Damping rate of plasmons and photons in a degenerate nonrelativistic plasma

    Full text link
    A calculation is presented of the plasmon and photon damping rates in a dense nonrelativistic plasma at zero temperature, following the resummation program of Braaten-Pisarski. At small soft momentum kk, the damping is dominated by 323 \to 2 scattering processes corresponding to double longitudinal Landau damping. The dampings are proportional to (α/vF)3/2k2/m(\alpha/v_{F})^{3/2} k^2/m, where vFv_{F} is the Fermi velocity.Comment: 9 pages, 2 figure

    Vibrational dynamics of confined granular material

    Get PDF
    By means of two-dimensional contact dynamics simulations, we analyze the vibrational dynamics of a confined granular layer in response to harmonic forcing. We use irregular polygonal grains allowing for strong variability of solid fraction. The system involves a jammed state separating passive (loading) and active (unloading) states. We show that an approximate expression of the packing resistance force as a function of the displacement of the free retaining wall from the jamming position provides a good description of the dynamics. We study in detail the scaling of displacements and velocities with loading parameters. In particular, we find that, for a wide range of frequencies, the data collapse by scaling the displacements with the inverse square of frequency, the inverse of the force amplitude and the square of gravity. Interestingly, compaction occurs during the extension of the packing, followed by decompaction in the contraction phase. We show that the mean compaction rate increases linearly with frequency up to a characteristic frequency and then it declines in inverse proportion to frequency. The characteristic frequency is interpreted in terms of the time required for the relaxation of the packing through collective grain rearrangements between two equilibrium states
    corecore