1,567 research outputs found

    Nodeless superconductivity in Lu5-xRh6Sn18+x with broken time reversal symmetry

    Get PDF
    Evidence for broken time reversal symmetry (TRS) has been found in the superconducting states of the R 5 Rh 6 Sn 18 ( R = Sc , Y, Lu) compounds with a centrosymmetric caged crystal structure, but the origin of this phenomenon is unresolved. Here, we report neutron diffraction measurements of single crystals with R = Lu , as well as measurements of the temperature dependence of the magnetic penetration depth using a self-induced tunnel-diode-oscillator (TDO)-based technique, together with band structure calculations using density functional theory. Neutron diffraction measurements reveal that the system crystallizes in a tetragonal caged structure, and that one of the nominal Lu sites in the Lu 5 Rh 6 Sn 18 structure is occupied by Sn, yielding a composition Lu 5 − x Rh 6 Sn 18 + x ( x = 1 ). The low temperature penetration depth shift Δ λ ( T ) exhibits an exponential temperature dependence below around 0.3 T c , giving clear evidence for fully gapped superconductivity. The derived superfluid density is reasonably well accounted for by a single-gap s -wave model, whereas agreement cannot be found for models of TRS breaking states with two-component order parameters. Moreover, band structure calculations reveal multiple bands crossing the Fermi level, and indicate that the aforementioned TRS breaking states would be expected to have nodes on the Fermi surface, in contrast to the observations

    Giant Anharmonic Phonon Scattering in PbTe

    Full text link
    Understanding the microscopic processes affecting the bulk thermal conductivity is crucial to develop more efficient thermoelectric materials. PbTe is currently one of the leading thermoelectric materials, largely thanks to its low thermal conductivity. However, the origin of this low thermal conductivity in a simple rocksalt structure has so far been elusive. Using a combination of inelastic neutron scattering measurements and first-principles computations of the phonons, we identify a strong anharmonic coupling between the ferroelectric transverse optic (TO) mode and the longitudinal acoustic (LA) modes in PbTe. This interaction extends over a large portion of reciprocal space, and directly affects the heat-carrying LA phonons. The LA-TO anharmonic coupling is likely to play a central role in explaining the low thermal conductivity of PbTe. The present results provide a microscopic picture of why many good thermoelectric materials are found near a lattice instability of the ferroelectric type

    Characterising citizenship: race, criminalisation and the extension of internal borders

    Get PDF
    Citizenship in the UK has in recent times been explicitly framed as a privilege not a right, granted selectively and withdrawn from some. There are several criteria that assist the government in distinguishing those deserving of British citizenship from those undeserving, one of the key ones being ‘character’. The ‘bad character’ criterion can apply for multiple reasons from inconsistencies in immigration paperwork to direct or indirect political associations with a range of disavowed political groups. Although not new, ‘bad character’ has become a principle reason for citizenship refusals in recent years, though has received little academic scrutiny. By bringing together quantitative and qualitative data on citizenship refusals, the article maps the scale of this measure, outlining what it means and to whom it applies. It argues that the ‘bad character’ criterion operates as a racialised exclusionary mechanism that constitutes a new set of amorphous restrictions upon the lives of non-white denizens

    Odour-mediated orientation of beetles is influenced by age, sex and morph

    Get PDF
    The behaviour of insects is dictated by a combination of factors and may vary considerably between individuals, but small insects are often considered en masse and thus these differences can be overlooked. For example, the cowpea bruchid Callosobruchus maculatus F. exists naturally in two adult forms: the active (flight) form for dispersal, and the inactive (flightless), more fecund but shorter-lived form. Given that these morphs show dissimilar biology, it is possible that they differ in odour-mediated orientation and yet studies of this species frequently neglect to distinguish morph type, or are carried out only on the inactive morph. Along with sex and age of individual, adult morph could be an important variable determining the biology of this and similar species, informing studies on evolution, ecology and pest management. We used an olfactometer with motion-tracking to investigate whether the olfactory behaviour and orientation of C. maculatus towards infested and uninfested cowpeas and a plant-derived repellent compound, methyl salicylate, differed between morphs or sexes. We found significant differences between the behaviour of male and female beetles and beetles of different ages, as well as interactive effects of sex, morph and age, in response to both host and repellent odours. This study demonstrates that behavioural experiments on insects should control for sex and age, while also considering differences between adult morphs where present in insect species. This finding has broad implications for fundamental entomological research, particularly when exploring the relationships between physiology, behaviour and evolutionary biology, and the application of crop protection strategies

    Magnetic Catalysis and Quantum Hall Ferromagnetism in Weakly Coupled Graphene

    Full text link
    We study the realization in a model of graphene of the phenomenon whereby the tendency of gauge-field mediated interactions to break chiral symmetry spontaneously is greatly enhanced in an external magnetic field. We prove that, in the weak coupling limit, and where the electron-electron interaction satisfies certain mild conditions, the ground state of charge neutral graphene in an external magnetic field is a quantum Hall ferromagnet which spontaneously breaks the emergent U(4) symmetry to U(2)XU(2). We argue that, due to a residual CP symmetry, the quantum Hall ferromagnet order parameter is given exactly by the leading order in perturbation theory. On the other hand, the chiral condensate which is the order parameter for chiral symmetry breaking generically obtains contributions at all orders. We compute the leading correction to the chiral condensate. We argue that the ensuing fermion spectrum resembles that of massive fermions with a vanishing U(4)-valued chemical potential. We discuss the realization of parity and charge conjugation symmetries and argue that, in the context of our model, the charge neutral quantum Hall state in graphene is a bulk insulator, with vanishing longitudinal conductivity due to a charge gap and Hall conductivity vanishing due to a residual discrete particle-hole symmetry.Comment: 35 page

    Wall roughness induces asymptotic ultimate turbulence

    Get PDF
    Turbulence is omnipresent in Nature and technology, governing the transport of heat, mass, and momentum on multiple scales. For real-world applications of wall-bounded turbulence, the underlying surfaces are virtually always rough; yet characterizing and understanding the effects of wall roughness for turbulence remains a challenge, especially for rotating and thermally driven turbulence. By combining extensive experiments and numerical simulations, here, taking as example the paradigmatic Taylor-Couette system (the closed flow between two independently rotating coaxial cylinders), we show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents. If only one of the walls is rough, we reveal that the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is thoroughly eliminated in the boundary layers and we thus achieve asymptotic ultimate turbulence, i.e. the upper limit of transport, whose existence had been predicted by Robert Kraichnan in 1962 (Phys. Fluids {\bf 5}, 1374 (1962)) and in which the scalings laws can be extrapolated to arbitrarily large Reynolds numbers

    Patterns of Interspecific Variation in the Heart Rates of Embryonic Reptiles

    Get PDF
    New non-invasive technologies allow direct measurement of heart rates (and thus, developmental rates) of embryos. We applied these methods to a diverse array of oviparous reptiles (24 species of lizards, 18 snakes, 11 turtles, 1 crocodilian), to identify general influences on cardiac rates during embryogenesis. Heart rates increased with ambient temperature in all lineages, but (at the same temperature) were faster in lizards and turtles than in snakes and crocodilians. We analysed these data within a phylogenetic framework. Embryonic heart rates were faster in species with smaller adult sizes, smaller egg sizes, and shorter incubation periods. Phylogenetic changes in heart rates were negatively correlated with concurrent changes in adult body mass and residual incubation period among the lizards, snakes (especially within pythons) and crocodilians. The total number of embryonic heart beats between oviposition and hatching was lower in squamates than in turtles or the crocodilian. Within squamates, embryonic iguanians and gekkonids required more heartbeats to complete development than did embryos of the other squamate families that we tested. These differences plausibly reflect phylogenetic divergence in the proportion of embryogenesis completed before versus after laying
    • …
    corecore