665 research outputs found

    (Non)-Renormalization of the Chiral Vortical Effect Coefficient

    Get PDF
    We show using diagramtic arguments that in some (but not all) cases, the temperature dependent part of the chiral vortical effect coefficient is independent of the coupling constant. An interpretation of this result in terms of quantization in the effective 3 dimensional Chern-Simons theory is also given. In the language of 3D dimensionally reduced theory, the value of the chiral vortical coefficient is related to the formula ∑n=1∞n=−1/12\sum_{n=1}^\infty n=-1/12. We also show that in the presence of dynamical gauge fields, the CVE coefficient is not protected from renormalization, even in the large NN limit.Comment: 11 pages, 3 figures. Version 2 corrects an error and calculates leading radiative correctio

    The feasibility of canine rabies elimination in Africa: dispelling doubts with data

    Get PDF
    <p><b>Background:</b> Canine rabies causes many thousands of human deaths every year in Africa, and continues to increase throughout much of the continent.</p> <p><b>Methodology/Principal Findings:</b> This paper identifies four common reasons given for the lack of effective canine rabies control in Africa: (a) a low priority given for disease control as a result of lack of awareness of the rabies burden; (b) epidemiological constraints such as uncertainties about the required levels of vaccination coverage and the possibility of sustained cycles of infection in wildlife; (c) operational constraints including accessibility of dogs for vaccination and insufficient knowledge of dog population sizes for planning of vaccination campaigns; and (d) limited resources for implementation of rabies surveillance and control. We address each of these issues in turn, presenting data from field studies and modelling approaches used in Tanzania, including burden of disease evaluations, detailed epidemiological studies, operational data from vaccination campaigns in different demographic and ecological settings, and economic analyses of the cost-effectiveness of dog vaccination for human rabies prevention.</p> <p><b>Conclusions/Significance:</b> We conclude that there are no insurmountable problems to canine rabies control in most of Africa; that elimination of canine rabies is epidemiologically and practically feasible through mass vaccination of domestic dogs; and that domestic dog vaccination provides a cost-effective approach to the prevention and elimination of human rabies deaths.</p&gt

    Orbifold equivalence for finite density QCD and effective field theory

    Full text link
    In the large N_c limit, some apparently different gauge theories turn out to be equivalent due to large N_c orbifold equivalence. We use effective field theory techniques to explore orbifold equivalence, focusing on the specific case of a recently discovered relation between an SO(2N_c) gauge theory and QCD. The equivalence to QCD has been argued to hold at finite baryon chemical potential, \mu_B, so long as one deforms the SO(2N_c) theory by certain "double-trace" terms. The deformed SO(2N_c) theory can be studied without a sign problem in the chiral limit, in contrast to SU(N_c) QCD at finite \mu_B. The purpose of the double-trace deformation in the SO(2N_c) theory is to prevent baryon number symmetry from breaking spontaneously at finite density, which is necessary for the equivalence to large N_c QCD to be valid. The effective field theory analysis presented here clarifies the physical significance of double-trace deformations, and strongly supports the proposed equivalence between the deformed SO(2N_c) theory and large N_c QCD at finite density.Comment: 39 pages, 5 figures, 2 tables. v2: Minor typo fixes and clarification

    Universal time-dependent deformations of Schrodinger geometry

    Get PDF
    We investigate universal time-dependent exact deformations of Schrodinger geometry. We present 1) scale invariant but non-conformal deformation, 2) non-conformal but scale invariant deformation, and 3) both scale and conformal invariant deformation. All these solutions are universal in the sense that we could embed them in any supergravity constructions of the Schrodinger invariant geometry. We give a field theory interpretation of our time-dependent solutions. In particular, we argue that any time-dependent chemical potential can be treated exactly in our gravity dual approach.Comment: 24 pages, v2: references adde

    The a-theorem and conformal symmetry breaking in holographic RG flows

    Full text link
    We study holographic models describing an RG flow between two fixed points driven by a relevant scalar operator. We show how to introduce a spurion field to restore Weyl invariance and compute the anomalous contribution to the generating functional in even dimensional theories. We find that the coefficient of the anomalous term is proportional to the difference of the conformal anomalies of the UV and IR fixed points, as expected from anomaly matching arguments in field theory. For any even dimensions the coefficient is positive as implied by the holographic a-theorem. For flows corresponding to spontaneous breaking of conformal invariance, we also compute the two-point functions of the energy-momentum tensor and the scalar operator and identify the dilaton mode. Surprisingly we find that in the simplest models with just one scalar field there is no dilaton pole in the two-point function of the scalar operator but a stronger singularity. We discuss the possible implications.Comment: 50 pages. v2: minor changes, added references, extended discussion. v3: we have clarified some of the calculations and assumptions, results unchanged. v4: published version in JHE

    Exploring T and S parameters in Vector Meson Dominance Models of Strong Electroweak Symmetry Breaking

    Get PDF
    We revisit the electroweak precision tests for Higgsless models of strong EWSB. We use the Vector Meson Dominance approach and express S and T via couplings characterizing vector and axial spin-1 resonances of the strong sector. These couplings are constrained by the elastic unitarity and by requiring a good UV behavior of various formfactors. We pay particular attention to the one-loop contribution of resonances to T (beyond the chiral log), and to how it can improve the fit. We also make contact with the recent studies of Conformal Technicolor. We explain why the second Weinberg sum rule never converges in these models, and formulate a condition necessary for preserving the custodial symmetry in the IR.Comment: 35 pages, 7 figures; v3: refs added, to appear in JHE

    Lorentz violation, Gravity, Dissipation and Holography

    Get PDF
    We reconsider Lorentz Violation (LV) at the fundamental level. We show that Lorentz Violation is intimately connected with gravity and that LV couplings in QFT must always be fields in a gravitational sector. Diffeomorphism invariance must be intact and the LV couplings transform as tensors under coordinate/frame changes. Therefore searching for LV is one of the most sensitive ways of looking for new physics, either new interactions or modifications of known ones. Energy dissipation/Cerenkov radiation is shown to be a generic feature of LV in QFT. A general computation is done in strongly coupled theories with gravity duals. It is shown that in scale invariant regimes, the energy dissipation rate depends non-triviallly on two characteristic exponents, the Lifshitz exponent and the hyperscaling violation exponent.Comment: LateX, 51 pages, 9 figures. (v2) References and comments added. Misprints correcte

    Use of mixed methods designs in substance research: a methodological necessity in Nigeria

    Get PDF
    The utility of mixed methods (qualitative and quantitative) is becoming increasingly accepted in health sciences, but substance studies are yet to substantially benefit from such utilities. While there is a growing number of mixed methods alcohol articles concerning developed countries, developing nations are yet to embrace this method. In the Nigerian context, the importance of mixed methods research is yet to be acknowledged. This article therefore, draws on alcohol studies to argue that mixed methods designs will better equip scholars to understand, explore, describe and explain why alcohol consumption and its related problems are increasing in Nigeria. It argues that as motives for consuming alcohol in contemporary Nigeria are multiple, complex and evolving, mixed method approaches that provide multiple pathways for proffering solutions to problems should be embraced

    Magnetic Catalysis and Quantum Hall Ferromagnetism in Weakly Coupled Graphene

    Full text link
    We study the realization in a model of graphene of the phenomenon whereby the tendency of gauge-field mediated interactions to break chiral symmetry spontaneously is greatly enhanced in an external magnetic field. We prove that, in the weak coupling limit, and where the electron-electron interaction satisfies certain mild conditions, the ground state of charge neutral graphene in an external magnetic field is a quantum Hall ferromagnet which spontaneously breaks the emergent U(4) symmetry to U(2)XU(2). We argue that, due to a residual CP symmetry, the quantum Hall ferromagnet order parameter is given exactly by the leading order in perturbation theory. On the other hand, the chiral condensate which is the order parameter for chiral symmetry breaking generically obtains contributions at all orders. We compute the leading correction to the chiral condensate. We argue that the ensuing fermion spectrum resembles that of massive fermions with a vanishing U(4)-valued chemical potential. We discuss the realization of parity and charge conjugation symmetries and argue that, in the context of our model, the charge neutral quantum Hall state in graphene is a bulk insulator, with vanishing longitudinal conductivity due to a charge gap and Hall conductivity vanishing due to a residual discrete particle-hole symmetry.Comment: 35 page

    Antifungal Activity of Microbial Secondary Metabolites

    Get PDF
    Secondary metabolites are well known for their ability to impede other microorganisms. Reanalysis of a screen of natural products using the Caenorhabditis elegans-Candida albicans infection model identified twelve microbial secondary metabolites capable of conferring an increase in survival to infected nematodes. In this screen, the two compound treatments conferring the highest survival rates were members of the epipolythiodioxopiperazine (ETP) family of fungal secondary metabolites, acetylgliotoxin and a derivative of hyalodendrin. The abundance of fungal secondary metabolites indentified in this screen prompted further studies investigating the interaction between opportunistic pathogenic fungi and Aspergillus fumigatus, because of the ability of the fungus to produce a plethora of secondary metabolites, including the well studied ETP gliotoxin. We found that cell-free supernatant of A. fumigatus was able to inhibit the growth of Candida albicans through the production of a secreted product. Comparative studies between a wild-type and an A. fumigatus ΔgliP strain unable to synthesize gliotoxin demonstrate that this secondary metabolite is the major factor responsible for the inhibition. Although toxic to organisms, gliotoxin conferred an increase in survival to C. albicans-infected C. elegans in a dose dependent manner. As A. fumigatus produces gliotoxin in vivo, we propose that in addition to being a virulence factor, gliotoxin may also provide an advantage to A. fumigatus when infecting a host that harbors other opportunistic fungi
    • …
    corecore