28 research outputs found

    The inherited blindness protein AIPL1 regulates the ubiquitin-like FAT10 pathway

    Get PDF
    Mutations in AIPL1 cause the inherited blindness Leber congenital amaurosis (LCA). AIPL1 has previously been shown to interact with NUB1, which facilitates the proteasomal degradation of proteins modified with the ubiquitin-like protein FAT10. Here we report that AIPL1 binds non-covalently to free FAT10 and FAT10ylated proteins and can form a ternary complex with FAT10 and NUB1. In addition, AIPL1 antagonised the NUB1-mediated degradation of the model FAT10 conjugate, FAT10-DHFR, and pathogenic mutations of AIPL1 were defective in inhibiting this degradation. While all AIPL1 mutants tested still bound FAT10-DHFR, there was a close correlation between the ability of the mutants to interact with NUB1 and their ability to prevent NUB1-mediated degradation. Interestingly, AIPL1 also co-immunoprecipitated the E1 activating enzyme for FAT10, UBA6, suggesting AIPL1 may have a role in directly regulating the FAT10 conjugation machinery. These studies are the first to implicate FAT10 in retinal cell biology and LCA pathogenesis, and reveal a new role of AIPL1 in regulating the FAT10 pathway

    Quantitation of DNA methylation by melt curve analysis

    Get PDF
    Background: Methylation of DNA is a common mechanism for silencing genes, and aberrant methylation is increasingly being implicated in many diseases such as cancer. There is a need for robust, inexpensive methods to quantitate methylation across a region containing a number of CpGs. We describe and validate a rapid, in-tube method to quantitate DNA methylation using the melt data obtained following amplification of bisulfite modified DNA in a real-time thermocycler. Methods: We first describe a mathematical method to normalise the raw fluorescence data generated by heating the amplified bisulfite modified DNA. From this normalised data the temperatures at which melting begins and finishes can be calculated, which reflect the less and more methylated template molecules present respectively. Also the T50, the temperature at which half the amplicons are melted, which represents the summative methylation of all the CpGs in the template mixture, can be calculated. These parameters describe the methylation characteristics of the region amplified in the original sample. Results: For validation we used synthesized oligonucleotides and DNA from fresh cells and formalin fixed paraffin embedded tissue, each with known methylation. Using our quantitation we could distinguish between unmethylated, partially methylated and fully methylated oligonucleotides mixed in varying ratios. There was a linear relationship between T50 and the dilution of methylated into unmethylated DNA. We could quantitate the change in methylation over time in cell lines treated with the demethylating drug 5-aza-2'-deoxycytidine, and the differences in methylation associated with complete, clonal or no loss of MGMT expression in formalin fixed paraffin embedded tissues. Conclusion: We have validated a rapid, simple in-tube method to quantify methylation which is robust and reproducible, utilizes easily designed primers and does not need proprietary algorithms or software. The technique does not depend on any operator manipulation or interpretation of the melt curves, and is suitable for use in any laboratory with a real-time thermocycler. The parameters derived provide an objective description and quantitation of the methylation in a specimen, and can be used to for statistical comparisons of methylation between specimens.Eric Smith, Michael E Jones and Paul A Dre

    Integrated Genome-Scale Prediction of Detrimental Mutations in Transcription Networks

    Get PDF
    A central challenge in genetics is to understand when and why mutations alter the phenotype of an organism. The consequences of gene inhibition have been systematically studied and can be predicted reasonably well across a genome. However, many sequence variants important for disease and evolution may alter gene regulation rather than gene function. The consequences of altering a regulatory interaction (or “edge”) rather than a gene (or “node”) in a network have not been as extensively studied. Here we use an integrative analysis and evolutionary conservation to identify features that predict when the loss of a regulatory interaction is detrimental in the extensively mapped transcription network of budding yeast. Properties such as the strength of an interaction, location and context in a promoter, regulator and target gene importance, and the potential for compensation (redundancy) associate to some extent with interaction importance. Combined, however, these features predict quite well whether the loss of a regulatory interaction is detrimental across many promoters and for many different transcription factors. Thus, despite the potential for regulatory diversity, common principles can be used to understand and predict when changes in regulation are most harmful to an organism

    Co-regulatory expression quantitative trait loci mapping: method and application to endometrial cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Expression quantitative trait loci (eQTL) studies have helped identify the genetic determinants of gene expression. Understanding the potential interacting mechanisms underlying such findings, however, is challenging.</p> <p>Methods</p> <p>We describe a method to identify the <it>trans-</it>acting drivers of multiple gene co-expression, which reflects the action of regulatory molecules. This method-termed <it>co-regulatory expression quantitative trait locus </it>(creQTL) <it>mapping</it>-allows for evaluation of a more focused set of phenotypes within a clear biological context than conventional eQTL mapping.</p> <p>Results</p> <p>Applying this method to a study of endometrial cancer revealed regulatory mechanisms supported by the literature: a creQTL between a locus upstream of STARD13/DLC2 and a group of seven IFNβ-induced genes. This suggests that the Rho-GTPase encoded by STARD13 regulates IFNβ-induced genes and the DNA damage response.</p> <p>Conclusions</p> <p>Because of the importance of IFNβ in cancer, our results suggest that creQTL may provide a finer picture of gene regulation and may reveal additional molecular targets for intervention. An open source R implementation of the method is available at <url>http://sites.google.com/site/kenkompass/</url>.</p

    Extensive Evolutionary Changes in Regulatory Element Activity during Human Origins Are Associated with Altered Gene Expression and Positive Selection

    Get PDF
    Understanding the molecular basis for phenotypic differences between humans and other primates remains an outstanding challenge. Mutations in non-coding regulatory DNA that alter gene expression have been hypothesized as a key driver of these phenotypic differences. This has been supported by differential gene expression analyses in general, but not by the identification of specific regulatory elements responsible for changes in transcription and phenotype. To identify the genetic source of regulatory differences, we mapped DNaseI hypersensitive (DHS) sites, which mark all types of active gene regulatory elements, genome-wide in the same cell type isolated from human, chimpanzee, and macaque. Most DHS sites were conserved among all three species, as expected based on their central role in regulating transcription. However, we found evidence that several hundred DHS sites were gained or lost on the lineages leading to modern human and chimpanzee. Species-specific DHS site gains are enriched near differentially expressed genes, are positively correlated with increased transcription, show evidence of branch-specific positive selection, and overlap with active chromatin marks. Species-specific sequence differences in transcription factor motifs found within these DHS sites are linked with species-specific changes in chromatin accessibility. Together, these indicate that the regulatory elements identified here are genetic contributors to transcriptional and phenotypic differences among primate species

    Widespread divergence of the CEACAM/PSG genes in vertebrates and humans suggests sensitivity to selection

    Get PDF
    In mammals, carcinoembryonic antigen cell adhesion molecules (CEACAMs) and pregnancy-specific glycoproteins (PSGs) play important roles in the regulation of pathogen transmission, tumorigenesis, insulin signaling turnover, and fetal–maternal interactions. However, how these genes evolved and to what extent they diverged in humans remain to be investigated specifically. Based on syntenic mapping of chordate genomes, we reveal that diverging homologs with a prototypic CEACAM architecture–including an extracellular domain with immunoglobulin variable and constant domain-like regions, and an intracellular domain containing ITAM motif–are present from cartilaginous fish to humans, but are absent in sea lamprey, cephalochordate or urochordate. Interestingly, the CEACAM/PSG gene inventory underwent radical divergence in various vertebrate lineages: from zero in avian species to dozens in therian mammals. In addition, analyses of genetic variations in human populations showed the presence of various types of copy number variations (CNVs) at the CEACAM/PSG locus. These copy number polymorphisms have 3–80% frequency in select populations, and encompass single to more than six PSG genes. Furthermore, we found that CEACAM/PSG genes contain a significantly higher density of nonsynonymous single nucleotide polymorphism (SNP) compared to the chromosome average, and many CEACAM/PSG SNPs exhibit high population differentiation. Taken together, our study suggested that CEACAM/PSG genes have had a more dynamic evolutionary history in vertebrates than previously thought. Given that CEACAM/PSGs play important roles in maternal–fetal interaction and pathogen recognition, these data have laid the groundwork for future analysis of adaptive CEACAM/PSG genotype-phenotypic relationships in normal and complicated pregnancies as well as other etiologies.Chia Lin Chang, Jenia Semyonov, Po Jen Cheng, Shang Yu Huang, Jae Il Park, Huai-Jen Tsai, Cheng-Yung Lin, Frank Grützner, Yung Kuei Soong, James J. Cai, Sheau Yu Teddy Hs
    corecore