1,772 research outputs found

    Investigation of potential artefactual changes in measurements of impedance changes during evoked activity: implications to electrical impedance tomography of brain function.

    Get PDF
    Electrical impedance tomography (EIT) could provide images of fast neural activity in the adult human brain with a resolution of 1 ms and 1 mm by imaging impedance changes which occur as ion channels open during neuronal depolarization. The largest changes occur at dc and decrease rapidly over 100 Hz. Evoked potentials occur in this bandwidth and may cause artefactual apparent impedance changes if altered by the impedance measuring current. These were characterized during the compound action potential in the walking leg nerves of Cancer pagurus, placed on Ag/AgCl hook electrodes, to identify how to avoid artefactual changes during brain EIT. Artefact-free impedance changes (δZ) decreased with frequency from -0.045 ± 0.01% at 225 Hz to -0.02 ± 0.01% at 1025 Hz (mean ± 1 SD, n = 24 in 12 nerves) which matched changes predicted by a finite element model. Artefactual δZ reached c.300% and 50% of the genuine membrane impedance change at 225 Hz and 600 Hz respectively but decreased with frequency of the applied current and was negligible above 1 kHz. The proportional amplitude (δZ (%)) of the artefact did not vary significantly with the amplitude of injected current of 5-20 µA pp. but decreased significantly from -0.09 ± 0.024 to -0.03 ± 0.023% with phase of 0 to 45°. For fast neural EIT of evoked activity in the brain, artefacts may arise with applied current of >10 µA. Independence of δZ with respect to phase but not the amplitude of applied current controls for them; they can be minimized by randomizing the phase of the applied measuring current and excluded by recording at >1 kHz

    High-throughput mechanobiology: Force modulation of ensemble biochemical and cell-based assays

    Get PDF
    Mechanobiology is focused on how the physical forces and mechanical properties of proteins, cells, and tissues contribute to physiology and disease. Although the response of proteins and cells to mechanical stimuli is critical for function, the tools to probe these activities are typically restricted to single-molecule manipulations. Here, we have developed a novel microplate reader assay to encompass mechanical measurements with ensemble biochemical and cellular assays, using a microplate lid modified with magnets. This configuration enables multiple static magnetic tweezers to function simultaneously across the microplate, thereby greatly increasing throughput. We demonstrate the broad applicability and versatility through in vitro and in cellulo approaches. Overall, our methodology allows, for the first time (to our knowledge), ensemble biochemical and cell-based assays to be performed under force in high-throughput format. This approach substantially increases the availability of mechanobiology measurements

    Comparison of total variation algorithms for electrical impedance tomography

    Get PDF
    The applications of total variation (TV) algorithms for electrical impedance tomography (EIT) have been investigated. The use of the TV regularisation technique helps to preserve discontinuities in reconstruction, such as the boundaries of perturbations and sharp changes in conductivity, which are unintentionally smoothed by traditional l2 norm regularisation. However, the non-differentiability of TV regularisation has led to the use of different algorithms. Recent advances in TV algorithms such as the primal dual interior point method (PDIPM), the linearised alternating direction method of multipliers (LADMM) and the spilt Bregman (SB) method have all been demonstrated successful EIT applications, but no direct comparison of the techniques has been made. Their noise performance, spatial resolution and convergence rate applied to time difference EIT were studied in simulations on 2D cylindrical meshes with different noise levels, 2D cylindrical tank and 3D anatomically head-shaped phantoms containing vegetable material with complex conductivity. LADMM had the fastest calculation speed but worst resolution due to the exclusion of the second-derivative; PDIPM reconstructed the sharpest change in conductivity but with lower contrast than SB; SB had a faster convergence rate than PDIPM and the lowest image errors

    A method for reconstructing tomographic images of evoked neural activity with electrical impedance tomography using intracranial planar arrays

    Get PDF
    A method is presented for reconstructing images of fast neural evoked activity in rat cerebral cortex recorded with electrical impedance tomography (EIT) and a 6 Ă— 5 mm(2) epicortical planar 30 electrode array. A finite element model of the rat brain and inverse solution with Tikhonov regularization were optimized in order to improve spatial resolution and accuracy. The optimized FEM mesh had 7 M tetrahedral elements, with finer resolution (0.05 mm) near the electrodes. A novel noise-based image processing technique based on t-test significance improved depth localization accuracy from 0.5 to 0.1 mm. With the improvements, a simulated perturbation 0.5 mm in diameter could be localized in a region 4 Ă— 5 mm(2) under the centre of the array to a depth of 1.4 mm, thus covering all six layers of the cerebral cortex with an accuracy of <0.1 mm. Simulated deep brain hippocampal or thalamic activity could be localized with an accuracy of 0.5 mm with a 256 electrode array covering the brain. Parallel studies have achieved a temporal resolution of 2 ms for imaging fast neural activity by EIT during evoked activity; this encourages the view that fast neural EIT can now resolve the propagation of depolarization-related fast impedance changes in cerebral cortex and deeper in the brain with a resolution equal or greater to the dimension of a cortical column

    Adolescence and Later Life Disease Burden: Quantifying the Contribution of Adolescent Tobacco Initiation From Longitudinal Cohorts

    Get PDF
    Purpose: Adolescence is a time of initiation of behaviors leading to noncommunicable diseases (NCDs). We use tobacco to illustrate a novel method for assessing the contribution of adolescence to later burden. // Methods: Data on initiation of regular smoking during adolescence (10–19 years) and current adult smoking were obtained from the 1958 British Birth Cohort, the U.S. National Longitudinal Study of Adolescent Health (Add Health), the Pelotas 1982 Birth Cohort, and the Victorian Adolescent Health Cohort Study. We estimated an “adolescent attributable fraction” (AAF) by calculating the proportion of persisting adult daily smoking initiated 155 countries using contemporary surveillance data. // Results: In the 1958 British Birth Cohort, 81.6% of daily smokers at age 50 years initiated < age 20 years, with a risk ratio of 6.1 for adult smoking related to adolescent initiation. The adjusted AAF was 69.1. Proportions of smokers initiating <20 years, risk ratio, and AAFs were 83.3%, 7.0%, and 70.4% for Add Health; 75.5%, 3.7%, and 50.2% in Victorian Adolescent Health Cohort Study; and 70.9%, 5.8%, and 56.9% in Pelotas males and 89.9%, 6.4%, and 75.9% in females. Initiation <16 years resulted in the highest AAFs. Estimated AAFs globally ranged from 35% in China to 76% in Argentina. // Conclusions: The contribution of adolescent smoking initiation to adult smoking burden is high, suggesting a need to formulate and implement effective actions to reduce smoking initiation in adolescents. Similar trends in other NCD risks suggest that adolescents will be central to future efforts to control NCDs

    Manual del SoftwareIfs Construction kit para generar imágenes que representan fractales mediante sistemas de funciones iteradas

    Get PDF
    Los últimos avances en matemáticas en el campo de geometría fractal han permitido el surgimiento de una gran variedad de aplicaciones informáticas útiles para la representación de conjuntos fractales. Este trabajo pretende presentar a IFSConstruction Kit como una opción para construir fractales con base en los sistemas de funciones iteradas

    PENGARUH HARGA DAN DESAIN PRODUK TERHADAP KEPUTUSAN PEMBELIAN MEBEL PADA UD. JEPARA INDAH KOTA PASURUAN

    Get PDF
    The purpose of this research is to examine the influence of price, and product design on furniture purchasing decision at UD. Jepara Indah Pasuruan City. This study uses multiple linier regression analysis on 100 respondents that have been determined using purposive sampling technique as a method of sampling by using questionnaires for data collection. The results of this study revealed that prices have a positive and significant effect on purchasing decision of furniture in UD. Jepara Indah and product design have a positive and significant impact on purchasing decision of furniture in UD. Jepara Indah
    • …
    corecore