176 research outputs found

    Evolution of Reproductive Morphology in Leaf Endophytes

    Get PDF
    The endophytic lifestyle has played an important role in the evolution of the morphology of reproductive structures (body) in one of the most problematic groups in fungal classification, the Leotiomycetes (Ascomycota). Mapping fungal morphologies to two groups in the Leiotiomycetes, the Rhytismatales and Hemiphacidiaceae reveals significant divergence in body size, shape and complexity. Mapping ecological roles to these taxa reveals that the groups include endophytic fungi living on leaves and saprobic fungi living on duff or dead wood. Finally, mapping of the morphologies to ecological roles reveals that leaf endophytes produce small, highly reduced fruiting bodies covered with fungal tissue or dead host tissue, while saprobic species produce large and intricate fruiting bodies. Intriguingly, resemblance between asexual conidiomata and sexual ascomata in some leotiomycetes implicates some common developmental pathways for sexual and asexual development in these fungi

    A New Chanidae (Ostariophysii: Gonorynchiformes) from the Cretaceous of Brazil with Affinities to Laurasian Gonorynchiforms from Spain

    Get PDF
    Based on specimens originally referred to as “Dastilbe minor”, a nomem-nudum, we describe a new genus of Chanidae †Nanaichthys longipinnus nov. gen. and sp. which exhibits several diagnostic characters such as the absence of orbitosphenoid and basisphenoid, anteriorly displaced quadrate-mandibular articulation, laterally expanded supraneurals, an acute angle between the preopercular limbs, expansion at the angle between the preopercular limbs, and a curved maxillary articular process. Its occurrence and supposed relationship within the Chanidae reinforce the influence of the Mediterranean Tethys over the Gondwanan main rift system prior to the Aptian/Albian highstands

    Phylogenetic position of the freshwater fish trypanosome, Trypanosoma ophiocephali (Kinetoplastida) inferred from the complete small subunit ribosomal RNA gene sequence

    Get PDF
    The complete small subunit rRNA (SSrRNA) gene sequence (2,142 nucleotides) of the freshwater fish trypanosome Trypanosoma ophiocephali Chen (1964) was determined. The phylogenetic analysis deduced using neighbor-joining, maximum parsimony, and Bayesian methods demonstrated the existence of an “aquatic clade”. T. ophiocephali was revealed to be a member of the freshwater fish trypanosomes and form the sister species with Trypanosoma siniperca and Trypanosoma sp. Carpio with high bootstrap values (98% MP, 100% NJ, 100% Bay). The high similarity of SSrRNA gene sequences and morphometric characters showed that T. ophiocephali, T. siniperca and T. sp. Carpio probably were the same species. The phylogenetic trees further suggested that Chinese freshwater fish trypanosome might be paraphyletic, and fish trypanosomes should have low host specificity

    Evolution of small putative group I introns in the SSU rRNA gene locus of Phialophora species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Group I introns (specifically subgroup IC1) are common in the nuclear ribosomal RNA genes of fungi. While most range in length from more than 200 to nearly 1800 nucleotides (nt) in length, several small putative (or degenerate) group I introns have been described that are between 56 and 81 nt. Although small, previously we demonstrated that the <it>Pa</it>SSU intron in the rRNA small subunit gene of <it>Phialophora americana </it>isolate Wang 1046 is capable of <it>in vitro </it>splicing using a standard group I intron pathway, thus qualifying it as a functional ribozyme.</p> <p>Findings</p> <p>Here, we describe eight short putative group I introns, ranging in length from 63 to 75 nt, in the rRNA small subunit genes of <it>Phialophora </it>isolates, a fungal genus that ranges from saprobic to pathogenic on plants and animals. All contain putative pairing regions P1, P7, and P10, as well as a pairing region formed between the middle of the intron and part of the 3' exon. The other pairing regions common in the core of standard group I introns are absent. However, parts of the 3' exon may aid in the stabilization of these small introns. Although the eight putative group I introns were from at least three species of <it>Phialophora</it>, phylogenetic analysis indicated that the eight are monophyletic. They are also monophyletic with the small introns of two lichen-forming fungi, <it>Porpidia crustulata </it>and <it>Arthonia lapidicola</it>.</p> <p>Conclusions</p> <p>The small putative group I introns in <it>Phialophora </it>have common features that may represent group I introns at their minima. They appear to have a single origin as indicated by their monophyly in phylogenetic analyses.</p

    Intraspecific Inversions Pose a Challenge for the trnH-psbA Plant DNA Barcode

    Get PDF
    BACKGROUND: The chloroplast trnH-psbA spacer region has been proposed as a prime candidate for use in DNA barcoding of plants because of its high substitution rate. However, frequent inversions associated with palindromic sequences within this region have been found in multiple lineages of Angiosperms and may complicate its use as a barcode, especially if they occur within species. METHODOLOGY/PRINCIPAL FINDINGS: Here, we evaluate the implications of intraspecific inversions in the trnH-psbA region for DNA barcoding efforts. We report polymorphic inversions within six species of Gentianaceae, all narrowly circumscribed morphologically: Gentiana algida, Gentiana fremontii, Gentianopsis crinita, Gentianopsis thermalis, Gentianopsis macrantha and Frasera speciosa. We analyze these sequences together with those from 15 other species of Gentianaceae and show that typical simple methods of sequence alignment can lead to misassignment of conspecifics and incorrect assessment of relationships. CONCLUSIONS/SIGNIFICANCE: Frequent inversions in the trnH-psbA region, if not recognized and aligned appropriately, may lead to large overestimates of the number of substitution events separating closely related lineages and to uniting more distantly related taxa that share the same form of the inversion. Thus, alignment of the trnH-psbA spacer region will need careful attention if it is used as a marker for DNA barcoding

    Optimized ancestral state reconstruction using Sankoff parsimony

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parsimony methods are widely used in molecular evolution to estimate the most plausible phylogeny for a set of characters. Sankoff parsimony determines the minimum number of changes required in a given phylogeny when a cost is associated to transitions between character states. Although optimizations exist to reduce the computations in the number of taxa, the original algorithm takes time <it>O</it>(<it>n</it><sup>2</sup>) in the number of states, making it impractical for large values of <it>n</it>.</p> <p>Results</p> <p>In this study we introduce an optimization of Sankoff parsimony for the reconstruction of ancestral states when ultrametric or additive cost matrices are used. We analyzed its performance for randomly generated matrices, Jukes-Cantor and Kimura's two-parameter models of DNA evolution, and in the reconstruction of elongation factor-1<it>α </it>and ancestral metabolic states of a group of eukaryotes, showing that in all cases the execution time is significantly less than with the original implementation.</p> <p>Conclusion</p> <p>The algorithms here presented provide a fast computation of Sankoff parsimony for a given phylogeny. Problems where the number of states is large, such as reconstruction of ancestral metabolism, are particularly adequate for this optimization. Since we are reducing the computations required to calculate the parsimony cost of a single tree, our method can be combined with optimizations in the number of taxa that aim at finding the most parsimonious tree.</p

    Comparing COI and ITS as DNA Barcode Markers for Mushrooms and Allies (Agaricomycotina)

    Get PDF
    DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI) has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species) has not been established. We succeeded in generating 167 partial COI sequences (∼450 bp) representing ∼100 morphospecies from ∼650 collections of Agaricomycotina using several sets of new primers. Large introns (∼1500 bp) at variable locations were detected in ∼5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (∼30%) with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS) to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms

    Paleogene Radiation of a Plant Pathogenic Mushroom

    Get PDF
    Background: The global movement and speciation of fungal plant pathogens is important, especially because of the economic losses they cause and the ease with which they are able to spread across large areas. Understanding the biogeography and origin of these plant pathogens can provide insights regarding their dispersal and current day distribution. We tested the hypothesis of a Gondwanan origin of the plant pathogenic mushroom genus Armillaria and the currently accepted premise that vicariance accounts for the extant distribution of the species. Methods: The phylogeny of a selection of Armillaria species was reconstructed based on Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian Inference (BI). A timeline was then placed on the divergence of lineages using a Bayesian relaxed molecular clock approach. Results: Phylogenetic analyses of sequenced data for three combined nuclear regions provided strong support for three major geographically defined clades: Holarctic, South American-Australasian and African. Molecular dating placed the initial radiation of the genus at 54 million years ago within the Early Paleogene, postdating the tectonic break-up of Gondwana. Conclusions: The distribution of extant Armillaria species is the result of ancient long-distance dispersal rather than vicariance due to continental drift. As these finding are contrary to most prior vicariance hypotheses for fungi, our result

    Speciation in little: the role of range and body size in the diversification of Malagasy mantellid frogs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rate and mode of lineage diversification might be shaped by clade-specific traits. In Madagascar, many groups of organisms are characterized by tiny distribution ranges and small body sizes, and this high degree of microendemism and miniaturization parallels a high species diversity in some of these groups. We here investigate the geographic patterns characterizing the radiation of the frog family Mantellidae that is virtually endemic to Madagascar. We integrate a newly reconstructed near-complete species-level timetree of the Mantellidae with georeferenced distribution records and maximum male body size data to infer the influence of these life-history traits on each other and on mantellid diversification.</p> <p>Results</p> <p>We reconstructed a molecular phylogeny based on nuclear and mitochondrial DNA for 257 species and candidate species of the mantellid frog radiation. Based on this phylogeny we identified 53 well-supported pairs of sister species that we used for phylogenetic comparative analyses, along with whole tree-based phylogenetic comparative methods. Sister species within the Mantellidae diverged at 0.2-14.4 million years ago and more recently diverged sister species had geographical range centroids more proximate to each other, independently of their current sympatric or allopatric occurrence. The largest number of sister species pairs had non-overlapping ranges, but several examples of young microendemic sister species occurring in full sympatry suggest the possibility of non-allopatric speciation. Range sizes of species included in the sister species comparisons increased with evolutionary age, as did range size differences between sister species, which rejects peripatric speciation. For the majority of mantellid sister species and the whole mantellid radiation, range and body sizes were associated with each other and small body sizes were linked to higher mitochondrial nucleotide substitution rates and higher clade diversity. In contrast, small range sizes were unexpectedly associated with a slow-down of mitochondrial substitution rates.</p> <p>Conclusions</p> <p>Based on these results we define a testable hypothesis under which small body sizes result in limited dispersal capabilities and low physiological tolerances, causing smaller and more strongly fragmented ranges. This can be thought to facilitate reproductive isolation and thus favor speciation. Contrary to the expectation of the faster speciation of such microendemic phenotype species, we only found small body sizes of mantellid frogs to be linked to higher diversification and substitution rates, but not small range sizes. A joint analysis of various species-rich regional anuran radiations might provide enough species with all combinations of range and body sizes for a more conclusive test of this hypothesis.</p
    corecore