15 research outputs found

    CMB Telescopes and Optical Systems

    Full text link
    The cosmic microwave background radiation (CMB) is now firmly established as a fundamental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB observations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1: Telescopes and Instrumentatio

    THE ATACAMA COSMOLOGY TELESCOPE: BEAM MEASUREMENTS AND THE MICROWAVE BRIGHTNESS TEMPERATURES OF URANUS AND SATURN

    Get PDF
    We describe the measurement of the beam profiles and window functions for the Atacama Cosmology Telescope (ACT), which operated from 2007 to 2010 with kilopixel bolometer arrays centered at 148, 218, and 277 GHz. Maps of Saturn are used to measure the beam shape in each array and for each season of observations. Radial profiles are transformed to Fourier space in a way that preserves the spatial correlations in the beam uncertainty to derive window functions relevant for angular power spectrum analysis. Several corrections are applied to the resulting beam transforms, including an empirical correction measured from the final cosmic microwave background (CMB) survey maps to account for the effects of mild pointing variation and alignment errors. Observations of Uranus made regularly throughout each observing season are used to measure the effects of atmospheric opacity and to monitor deviations in telescope focus over the season. Using the WMAP-based calibration of the ACT maps to the CMB blackbody, we obtain precise measurements of the brightness temperatures of the Uranus and Saturn disks at effective frequencies of 149 and 219 GHz. For Uranus we obtain thermodynamic brightness temperatures 106.7 ± 2.2 K and 100.1 ± 3.1 K. For Saturn, we model the effects of the ring opacity and emission using a simple model and obtain resulting (unobscured) disk temperatures of 137.3 ± 3.2 K and 137.3 ± 4.7 K. © 2013. The American Astronomical Society. All rights reserved

    The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxy clusters at 148 GHz from three seasons of data

    No full text
    We present a catalog of 68 galaxy clusters, of which 19 are new discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the Atacama Cosmology Telescope (ACT) survey on the celestial equator. With this addition, the ACT collaboration has reported a total of 91 optically confirmed, SZ detected clusters. The 504 square degree survey region includes 270 square degrees of overlap with SDSS Stripe 82, permitting the confirmation of SZ cluster candidates in deep archival optical data. The subsample of 48 clusters within Stripe 82 is estimated to be 90% complete for M500c > 4.5 × 1014M⊙ and redshifts 0.15 < z < 0.8. While a full suite of matched filters is used to detect the clusters, the sample is studied further through a "Profile Based Amplitude Analysis" using a statistic derived from a single filter at a fixed θ500 = 5'9 angular scale. This new approach incorporates the cluster redshift along with prior information on the cluster pressure profile to fix the relationship between the cluster characteristic size (R500) and the integrated Compton parameter (Y500). We adopt a one-parameter family of "Universal Pressure Profiles" (UPP) with associated scaling laws, derived from X-ray measurements of nearby clusters, as a baseline model. Three additional models of cluster physics are used to investigate a range of scaling relations beyond the UPP prescription. Assuming a concordance cosmology, the UPP scalings are found to be nearly identical to an adiabatic model, while a model incorporating non-thermal pressure better matches dynamical mass measurements and masses from the South Pole Telescope. A high signal to noise ratio subsample of 15 ACT clusters with complete optical follow-up is used to obtain cosmological constraints. We demonstrate, using fixed scaling relations, how the constraints depend on the assumed gas model if only SZ measurements are used, and show that constraints from SZ data are limited by uncertainty in the scaling relation parameters rather than sample size or measurement uncertainty. We next add in seven clusters from the ACT Southern survey, including their dynamical mass measurements, which are based on galaxy velocity dispersions and thus are independent of the gas physics. In combination with WMAP7 these data simultaneously constrain the scaling relation and cosmological parameters, yielding 68% confidence ranges described by σ8 = 0.829 ± 0.024 and Ωm = 0.292 ± 0.025. We consider these results in the context of constraints from CMB and other cluster studies. The constraints arise mainly due to the inclusion of the dynamical mass information and do not require strong priors on the SZ scaling relation parameters. The results include marginalization over a 15% bias in dynamical masses relative to the true halo mass. In an extension to ACDM that incorporates non-zero neutrino mass density, we combine our data with WMAP7, Baryon Acoustic Oscillation data, and Hubble constant measurements to constrain the sum of the neutrino mass species to be Σv mv < 0.29 eV (95% confidence limit). © 2013 IOP Publishing Ltd and Sissa Medialab srl

    The Atacama Cosmology Telescope: Calibration with WMAP Using Cross-Correlations

    No full text
    We present a new calibration method based on cross-correlations with WMAP and apply it to data from the Atacama Cosmology Telescope (ACT). ACT's observing strategy and map making procedure allows an unbiased reconstruction of the modes in the maps over a wide range of multipoles. By directly matching the ACT maps to WMAP observations in the multipole range of 400 < ell < 1000, we determine the absolute calibration with an uncertainty of 2% in temperature. The precise measurement of the calibration error directly impacts the uncertainties in the cosmological parameters estimated from the ACT power spectra. We also present a combined map based on ACT and WMAP data that has high signal-to-noise over a wide range of multipoles

    THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE 600 < l < 8000 COSMIC MICROWAVE BACKGROUND POWER SPECTRUM AT 148 GHz

    No full text
    We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz. The measurement uses maps with 1′.4 angular resolution made with data from the Atacama Cosmology Telescope (ACT). The observations cover 228 deg2 of the southern sky, in a 4°.2 wide strip centered on declination 53° south. The CMB at arcminute angular scales is particularly sensitive to the Silk damping scale, to the Sunyaev-Zel'dovich (SZ) effect from galaxy clusters, and to emission by radio sources and dusty galaxies. After masking the 108 brightest point sources in our maps, we estimate the power spectrum between 600 < ℓ < 8000 using the adaptive multi-taper method to minimize spectral leakage and maximize use of the full data set. Our absolute calibration is based on observations of Uranus. To verify the calibration and test the fidelity of our map at large angular scales, we cross-correlate the ACT map to the WMAP map and recover the WMAP power spectrum from 250 < ℓ < 1150. The power beyond the Silk damping tail of the CMB (ℓ ∼ 5000) is consistent with models of the emission from point sources. We quantify the contribution of SZ clusters to the power spectrum by fitting to a model normalized to σ 8 = 0.8. We constrain the model's amplitude ASZ < 1.63 (95% CL). If interpreted as a measurement of σ 8, this implies σ 8SZ < 0.86 (95% CL) given our SZ model. A fit of ACT and WMAP five-year data jointly to a six-parameter ACDM model plus point sources and the SZ effect is consistent with these results. © 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A
    corecore