28 research outputs found

    Label-free Detection of Influenza Viruses using a Reduced Graphene Oxide-based Electrochemical Immunosensor Integrated with a Microfluidic Platform

    Get PDF
    Reduced graphene oxide (RGO) has recently gained considerable attention for use in electrochemical biosensing applications due to its outstanding conducting properties and large surface area. This report presents a novel microfluidic chip integrated with an RGO-based electrochemical immunosensor for label-free detection of an influenza virus, H1N1. Three microelectrodes were fabricated on a glass substrate using the photolithographic technique, and the working electrode was functionalized using RGO and monoclonal antibodies specific to the virus. These chips were integrated with polydimethylsiloxane microchannels. Structural and morphological characterizations were performed using X-ray photoelectron spectroscopy and scanning electron microscopy. Electrochemical studies revealed good selectivity and an enhanced detection limit of 0.5 PFU mL(-1), where the chronoamperometric current increased linearly with H1N1 virus concentration within the range of 1 to 104 PFU mL(-1) (R-2 = 0.99). This microfluidic immunosensor can provide a promising platform for effective detection of biomolecules using minute samples.ope

    Data enhancement for co-morbidity measurement among patients referred for sleep diagnostic testing: an observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Observational outcome studies of patients with obstructive sleep apnea (OSA) require adjustment for co-morbidity to produce valid results. The aim of this study was to evaluate whether the combination of administrative data and self-reported data provided a more complete estimate of co-morbidity among patients referred for sleep diagnostic testing.</p> <p>Methods</p> <p>A retrospective observational study of 2149 patients referred for sleep diagnostic testing in Calgary, Canada. Self-reported co-morbidity was obtained with a questionnaire; administrative data and validated algorithms (when available) were also used to define the presence of these co-morbid conditions within a two-year period prior to sleep testing.</p> <p>Results</p> <p>Patient self-report of co-morbid conditions had varying levels of agreement with those derived from administrative data, ranging from substantial agreement for diabetes (κ = 0.79) to poor agreement for cardiac arrhythmia (κ = 0.14). The enhanced measure of co-morbidity using either self-report or administrative data had face validity, and provided clinically meaningful trends in the prevalence of co-morbidity among this population.</p> <p>Conclusion</p> <p>An enhanced measure of co-morbidity using self-report and administrative data can provide a more complete measure of the co-morbidity among patients with OSA when agreement between the two sources is poor. This methodology will aid in the adjustment of these coexisting conditions in observational studies in this area.</p

    3D-Printed Stationary Phases with Ordered Morphology: State of the Art and Future Development in Liquid Chromatography Chromatographia

    Get PDF

    Electroosmotic Flow (DC)

    No full text

    The application of microfluidic devices for viral diagnosis in developing countries

    Full text link
    Whilst diseases such as diabetes and cardiovascular disorders are increasing in the developed world, the main threat to global health remains viral-based infectious disease. Such diseases are notably prevalent in developing countries, where they represent a major cause of mortality; however, their detection and prevention is typically hampered by poor infrastructure and a lack of resources to support the sophisticated diagnostic tools commonly found in modern laboratories. Microfluidic-based diagnostics has the potential to close the gap between developed and developing world medical needs due to the robustness and reduced operating costs such technology offers. The most recent developments in microfluidic diagnostics for viral infections have explored the separation and enumeration of immune cells, the capture and identification of viral particles, and antiviral drug evaluation within microchannels and chambers. Advances in solid-phase separation, isothermal amplification, real-time detection of nucleotide products, and improved efficiency of detection systems in microfluidic platforms have also opened up opportunities for diagnostic innovation. This chapter reviews the potential capability microfluidic technology can offer in addressing the practical challenges of providing diagnostic technology for developing countries, illustrated by research on key viral diseases
    corecore