7 research outputs found

    Mapping LIDC, RadLex™, and Lung Nodule Image Features

    No full text
    Ideally, an image should be reported and interpreted in the same way (e.g., the same perceived likelihood of malignancy) or similarly by any two radiologists; however, as much research has demonstrated, this is not often the case. Various efforts have made an attempt at tackling the problem of reducing the variability in radiologists’ interpretations of images. The Lung Image Database Consortium (LIDC) has provided a database of lung nodule images and associated radiologist ratings in an effort to provide images to aid in the analysis of computer-aided tools. Likewise, the Radiological Society of North America has developed a radiological lexicon called RadLex. As such, the goal of this paper is to investigate the feasibility of associating LIDC characteristics and terminology with RadLex terminology. If matches between LIDC characteristics and RadLex terms are found, probabilistic models based on image features may be used as decision-based rules to predict if an image or lung nodule could be characterized or classified as an associated RadLex term. The results of this study were matches for 25 (74%) out of 34 LIDC terms in RadLex. This suggests that LIDC characteristics and associated rating terminology may be better conceptualized or reduced to produce even more matches with RadLex. Ultimately, the goal is to identify and establish a more standardized rating system and terminology to reduce the subjective variability between radiologist annotations. A standardized rating system can then be utilized by future researchers to develop automatic annotation models and tools for computer-aided decision systems

    Ontology of Gaps in Content-Based Image Retrieval

    No full text
    Content-based image retrieval (CBIR) is a promising technology to enrich the core functionality of picture archiving and communication systems (PACS). CBIR has a potential for making a strong impact in diagnostics, research, and education. Research as reported in the scientific literature, however, has not made significant inroads as medical CBIR applications incorporated into routine clinical medicine or medical research. The cause is often attributed (without supporting analysis) to the inability of these applications in overcoming the “semantic gap.” The semantic gap divides the high-level scene understanding and interpretation available with human cognitive capabilities from the low-level pixel analysis of computers, based on mathematical processing and artificial intelligence methods. In this paper, we suggest a more systematic and comprehensive view of the concept of “gaps” in medical CBIR research. In particular, we define an ontology of 14 gaps that addresses the image content and features, as well as system performance and usability. In addition to these gaps, we identify seven system characteristics that impact CBIR applicability and performance. The framework we have created can be used a posteriori to compare medical CBIR systems and approaches for specific biomedical image domains and goals and a priori during the design phase of a medical CBIR application, as the systematic analysis of gaps provides detailed insight in system comparison and helps to direct future research

    Radiation Damage

    No full text
    corecore