86 research outputs found

    Yoga-Based Cardiac Rehabilitation After Acute Myocardial Infarction: A Randomized Trial

    Get PDF
    Background: Given the shortage of cardiac rehabilitation (CR) programs in India and poor uptake worldwide, there is an urgent need to find alternative models of CR that are inexpensive and may offer choice to subgroups with poor uptake (e.g., women and elderly). Objectives: This study sought to evaluate the effects of yoga-based CR (Yoga-CaRe) on major cardiovascular events and self-rated health in a multicenter randomized controlled trial. Methods: The trial was conducted in 24 medical centers across India. This study recruited 3,959 patients with acute myocardial infarction with a median and minimum follow-up of 22 and 6 months. Patients were individually randomized to receive either a Yoga-CaRe program (n = 1,970) or enhanced standard care involving educational advice (n = 1,989). The co-primary outcomes were: 1) first occurrence of major adverse cardiovascular events (MACE) (composite of all-cause mortality, myocardial infarction, stroke, or emergency cardiovascular hospitalization); and 2) self-rated health on the European Quality of Life–5 Dimensions–5 Level visual analogue scale at 12 weeks. Results: MACE occurred in 131 (6.7%) patients in the Yoga-CaRe group and 146 (7.4%) patients in the enhanced standard care group (hazard ratio with Yoga-CaRe: 0.90; 95% confidence interval [CI]: 0.71 to 1.15; p = 0.41). Self-rated health was 77 in Yoga-CaRe and 75.7 in the enhanced standard care group (baseline-adjusted mean difference in favor of Yoga-CaRe: 1.5; 95% CI: 0.5 to 2.5; p = 0.002). The Yoga-CaRe group had greater return to pre-infarct activities, but there was no difference in tobacco cessation or medication adherence between the treatment groups (secondary outcomes). Conclusions: Yoga-CaRe improved self-rated health and return to pre-infarct activities after acute myocardial infarction, but the trial lacked statistical power to show a difference in MACE. Yoga-CaRe may be an option when conventional CR is unavailable or unacceptable to individuals. (A study on effectiveness of YOGA based cardiac rehabilitation programme in India and United Kingdom; CTRI/2012/02/002408)

    Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles

    Get PDF
    Magnetic nanoparticles (MNPs) have become increasingly important in biomedical applications like magnetic imaging and hyperthermia based cancer treatment. Understanding their magnetic spin configurations is important for optimizing these applications. The measured magnetization of MNPs can be significantly lower than bulk counterparts, often due to canted spins. This has previously been presumed to be a surface effect, where reduced exchange allows spins closest to the nanoparticle surface to deviate locally from collinear structures. We demonstrate that intraparticle effects can induce spin canting throughout a MNP via the Dzyaloshinskii-Moriya interaction (DMI). We study ~7.4 nm diameter, core/shell Fe3O4/MnxFe3−xO4 MNPs with a 0.5 nm Mn-ferrite shell. Mössbauer spectroscopy, x-ray absorption spectroscopy and x-ray magnetic circular dichroism are used to determine chemical structure of core and shell. Polarized small angle neutron scattering shows parallel and perpendicular magnetic correlations, suggesting multiparticle coherent spin canting in an applied field. Atomistic simulations reveal the underlying mechanism of the observed spin canting. These show that strong DMI can lead to magnetic frustration within the shell and cause canting of the net particle moment. These results illuminate how core/shell nanoparticle systems can be engineered for spin canting across the whole of the particle, rather than solely at the surface

    Alley coppice—a new system with ancient roots

    Get PDF

    Epitaxial Co metal thin film grown by pulsed laser deposition using oxide target

    No full text
    We report here the growth of epitaxial Co metal thin film on c-plane sapphire by pulsed laser deposition (RD) using Co:ZnO target utilizing the composition inhomogeneity of the corresponding plasma. Two distinct plasma composition regions have been observed using heavily alloyed Co0.6Zn0.4O target. The central and intense region of the plasma grows Co:ZnO film; the extreme tail grows only Co metal with no trace of either ZnO or Co oxide In between the two extremes, mixed phases (Co +Co-oxides +Co:ZnO) were observed. The Co metal thin film grown in this way shows room temperature ferromagnetism with large in plane magnetization similar to 1288 emu cm(-3) and a coerciviLy of similar to 230 Oe with applied field parallel to the film-substrate interface. Carrier density of the film is similar to 10(22) cm(-3). The film is epiLaxial single phase Co metal which is confirmed by both X-ray diffraction and transmission electron microscopy characierizaLions. Planar Hall Effect (PHE) and Magneto Optic Kerr Effect (MOKE) measurements confirm that the film possesses similar attributes of Co metal. The result shows that the epiLaxial Co metal thin film can be grown from its oxides in the PLD. (C) 2014 Elsevier B.V. All rights reserved
    corecore