28 research outputs found

    miR-210: fine-tuning the hypoxic response

    Get PDF
    Hypoxia is a central component of the tumor microenvironment and represents a major source of therapeutic failure in cancer therapy. Recent work has provided a wealth of evidence that noncoding RNAs and, in particular, microRNAs, are significant members of the adaptive response to low oxygen in tumors. All published studies agree that miR-210 specifically is a robust target of hypoxia-inducible factors, and the induction of miR-210 is a consistent characteristic of the hypoxic response in normal and transformed cells. Overexpression of miR-210 is detected in most solid tumors and has been linked to adverse prognosis in patients with soft-tissue sarcoma, breast, head and neck, and pancreatic cancer. A wide variety of miR-210 targets have been identified, pointing to roles in the cell cycle, mitochondrial oxidative metabolism, angiogenesis, DNA damage response, and cell survival. Additional microRNAs seem to be modulated by low oxygen in a more tissue-specific fashion, adding another layer of complexity to the vast array of protein-coding genes regulated by hypoxia

    Regional research priorities in brain and nervous system disorders

    Get PDF
    The characteristics of neurological, psychiatric, developmental and substance-use disorders in low-and middle-income countries are unique and the burden that they have will be different from country to country. Many of the differences are explained by the wide variation in population demographics and size, poverty, conflict, culture, land area and quality, and genetics. Neurological, psychiatric, developmental and substance-use disorders that result from, or are worsened by, a lack of adequate nutrition and infectious disease still afflict much of sub-Saharan Africa, although disorders related to increasing longevity, such as stroke, are on the rise. In the Middle East and North Africa, major depressive disorders and post-traumatic stress disorder are a primary concern because of the conflict-ridden environment. Consanguinity is a serious concern that leads to the high prevalence of recessive disorders in the Middle East and North Africa and possibly other regions. The burden of these disorders in Latin American and Asian countries largely surrounds stroke and vascular disease, dementia and lifestyle factors that are influenced by genetics. Although much knowledge has been gained over the past 10 years, the epidemiology of the conditions in low-and middle-income countries still needs more research. Prevention and treatments could be better informed with more longitudinal studies of risk factors. Challenges and opportunities for ameliorating nervous-system disorders can benefit from both local and regional research collaborations. The lack of resources and infrastructure for health-care and related research, both in terms of personnel and equipment, along with the stigma associated with the physical or behavioural manifestations of some disorders have hampered progress in understanding the disease burden and improving brain health. Individual countries, and regions within countries, have specific needs in terms of research priorities.Fil: Ravindranath, Vijayalakshmi. Indian Institute of Science; IndiaFil: Dang, Hoang Minh. Vietnam National University; VietnamFil: Goya, Rodolfo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaFil: Mansour, Hader. University of Pittsburgh; Estados Unidos. Mansoura University; EgiptoFil: Nimgaonkar, Vishwajit L.. University of Pittsburgh; Estados UnidosFil: Russell, Vivienne Ann. University of Cape Town; SudáfricaFil: Xin, Yu. Peking University; Chin

    Deposition of hydrogenated amorphous carbon films with enhanced sp3-C bonding on nanocrystalline palladium interlayer

    No full text
    The present study deals with the deposition of hydrogenated amorphous carbon (a-C:H) films on Si (100) substrates with and without an interlayer of nanocrystalline palladium (nc-Pd) on them, by high-voltage electro-dissociation of N,N-dimethyl formamide (DMF). Significant improvement in the sp3 carbon content has been observed for a-C:H films grown on nc-Pd interlayer as revealed by Fourier transformed infrared (FTIR), Raman, X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) spectroscopic techniques. It is inferred that H2 activation on palladium sites leads to the stabilization of sp3-C bonding, thereby improving the quality of the deposits grown on them.© Elsevie

    Step growth in single crystal diamond grown by microwave plasma chemical vapor deposition

    No full text
    Single crystal diamond films of varying quality are deposited using microwave plasma chemical vapor deposition (MPCVD) apparatus. Unpolished natural diamond seeds are used as substrates in the temperature (T-s) range 850-1200 degrees C. The gas mixture of methane (CH4), hydrogen (H,) and oxygen (0,) is used for the deposition of diamond. The deposition pressure is varied in the range 90 to 150 Torr. The films are characterized using scanning electron microscopy (SEM), Atomic force microscopy (AFM) and Raman spectroscopy techniques. The growth morphology of the films is found to be a sensitive function of the deposition parameters. The crystalline nature of the films change from polycrystalline to single crystal as we increase T, and for a certain set of parameters the filamentary growth of the diamond crystals can be seen. The films are polycrystalline in the range Of substrate temperature 850-900 degrees C and oriented grains of diamond crystals arc evident as the T, increases. The single crystal diamond growth is observed to proceed via the step growth mechanism with the evidence of bunching of the steps. Our study explores evolution of the growth of single crystal diamond in a wide range of parameters. (c) 2005 Elsevier B.V. All rights reserved
    corecore