35 research outputs found

    Distinct Changes in cAMP and Extracellular Signal-Regulated Protein Kinase Signalling in L-DOPA-Induced Dyskinesia

    Get PDF
    Background: In rodents, the development of dyskinesia produced by L-DOPA in the dopamine-depleted striatum occurs in response to increased dopamine D1 receptor-mediated activation of the cAMP- protein kinase A and of the Rasextracellular signal-regulated kinase (ERK) signalling pathways. However, very little is known, in non-human primates, about the regulation of these signalling cascades and their association with the induction, manifestation and/or maintenance of dyskinesia. Methodology/Results: We here studied, in the gold-standard non-human primate model of Parkinson’s disease, the changes in PKA-dependent phosphorylation of DARPP-32 and GluR1 AMPA receptor, as well as in ERK and ribosomal protein S6 (S6) phosphorylation, associated to acute and chronic administration of L-DOPA. Increased phosphorylation of DARPP-32 and GluR1 was observed in both L-DOPA first-ever exposed and chronically-treated dyskinetic parkinsonian monkeys. In contrast, phosphorylation of ERK and S6 was enhanced preferentially after acute L-DOPA administration and decreased during the course of chronic treatment. Conclusion: Dysregulation of cAMP signalling is maintained during the course of chronic L-DOPA administration, while abnormal ERK signalling peaks during the initial phase of L-DOPA treatment and decreases following prolonged exposure

    The role of GRK6 in animal models of Parkinson's Disease and L-DOPA treatment

    Get PDF
    G protein-coupled Receptor Kinase 6 (GRK6) belongs to a family of kinases that phosphorylate GPCRs. GRK6 levels were found to be altered in Parkinson's Disease (PD) and D2 dopamine receptors are supersensitive in mice lacking GRK6 (GRK6-KO mice). To understand how GRK6 modulates the behavioral manifestations of dopamine deficiency and responses to L-DOPA, we used three approaches to model PD in GRK6-KO mice: 1) the cataleptic response to haloperidol; 2) introducing GRK6 mutation to an acute model of absolute dopamine deficiency, DDD mice; 3) hemiparkinsonian 6-OHDA model. Furthermore, dopamine-related striatal signaling was analyzed by assessing the phosphorylation of AKT/GSK3β and ERK1/2. GRK6 deficiency reduced cataleptic behavior, potentiated the acute effect of L-DOPA in DDD mice, reduced rotational behavior in hemi-parkinsonian mice, and reduced abnormal involuntary movements induced by chronic L-DOPA. These data indicate that approaches to regulate GRK6 activity could be useful in modulating both therapeutic and side-effects of L-DOPA

    Neuroanatomical Study of the A11 Diencephalospinal Pathway in the Non-Human Primate

    Get PDF
    BACKGROUND: The A11 diencephalospinal pathway is crucial for sensorimotor integration and pain control at the spinal cord level. When disrupted, it is thought to be involved in numerous painful conditions such as restless legs syndrome and migraine. Its anatomical organization, however, remains largely unknown in the non-human primate (NHP). We therefore characterized the anatomy of this pathway in the NHP. METHODS AND FINDINGS: In situ hybridization of spinal dopamine receptors showed that D1 receptor mRNA is absent while D2 and D5 receptor mRNAs are mainly expressed in the dorsal horn and D3 receptor mRNA in both the dorsal and ventral horns. Unilateral injections of the retrograde tracer Fluoro-Gold (FG) into the cervical spinal enlargement labeled A11 hypothalamic neurons quasi-exclusively among dopamine areas. Detailed immunohistochemical analysis suggested that these FG-labeled A11 neurons are tyrosine hydroxylase-positive but dopa-decarboxylase and dopamine transporter-negative, suggestive of a L-DOPAergic nucleus. Stereological cell count of A11 neurons revealed that this group is composed by 4002±501 neurons per side. A 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) intoxication with subsequent development of a parkinsonian syndrome produced a 50% neuronal cell loss in the A11 group. CONCLUSION: The diencephalic A11 area could be the major source of L-DOPA in the NHP spinal cord, where it may play a role in the modulation of sensorimotor integration through D2 and D3 receptors either directly or indirectly via dopamine formation in spinal dopa-decarboxylase-positives cells

    MPTP: advances from an evergreen neurotoxin

    No full text
    Since its discovery in 1976, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) models in rodents and nonhuman primates have continuously renewed to keep up with progresses of Parkinson’s disease (PD) research. MPTP is able to reproduce almost all the clinical and neuropathological features of PD when administered to monkeys. In contrast, up to date no rodent model has been able to reproduce all PD features in one. Nevertheless, MPTP is a very versatile neurotoxin that can reproduce different aspects of PD pathology, depending upon the dose and regimen of administration. At the present time, a number of different MPTP models have been developed, allowing researchers to investigate either the classical PD neuropathology and neuroprotective mechanisms or known pathological processes underlining more recently discovered aspects of the disease, such as nonmotor symptoms. In this chapter primate and rodent MPTP models are reviewed, focusing mainly on the contribution that different MPTP protocols can offer to reproduce the multifaceted aspects of the disease

    The Properties of Lauric Acid and Their Significance in Coconut Oil

    No full text
    The primary fatty acid of coconut oil is lauric acid, which is present at approximately 45–53 %. The metabolic and physiological properties of lauric acid account for many of the properties of coconut oil. Coconut oil is rapidly metabolized because it is easily absorbed and lauric acid is easily transported. Detailed studies have shown that the majority of ingested lauric acid is transported directly to the liver where it is directly converted to energy and other metabolites rather than being stored as fat. Such metabolites include ketone bodies, which can be used by extrahepatic tissues, such as the brain and heart, as an immediate form of energy. Studies on the effect of lauric acid on serum cholesterol are contradictory. Among saturated fatty acids, lauric acid has been shown to contribute the least to fat accumulation. Lauric acid and monolaurin have demonstrably significant antimicrobial activity against gram positive bacteria and a number of fungi and viruses. Today there are many commercial products that use lauric acid and monolaurin as antimicrobial agents. Because of the significant differences in the properties of lauric acid relative to longer chain fatty acids, they are typically differentiated as medium-chain fatty acids covering C6–C12, and long-chain fatty acids covering C14 and longer
    corecore