1,429 research outputs found

    Study of the performance of a large scale water-Cherenkov detector (MEMPHYS)

    Full text link
    MEMPHYS (MEgaton Mass PHYSics) is a proposed large-scale water Cherenkov experiment to be performed deep underground. It is dedicated to nucleon decay searches, neutrinos from supernovae, solar and atmospheric neutrinos, as well as neutrinos from a future Super-Beam or Beta-Beam to measure the CP violating phase in the leptonic sector and the mass hierarchy. A full simulation of the detector has been performed to evaluate its performance for beam physics. The results are given in terms of "Migration Matrices" of reconstructed versus true neutrino energy, taking into account all the experimental effects.Comment: Updated after JCAP's referee's comment

    Future large-scale water-Cherenkov detector

    Full text link
    MEMPHYS (MEgaton Mass PHYSics) is a proposed large-scale water-Cherenkov experiment to be performed deep underground. It is dedicated to nucleon decay searches and the detection of neutrinos from supernovae, solar, and atmospheric neutrinos, as well as neutrinos from a future beam to measure the CP violating phase in the leptonic sector and the mass hierarchy. This paper provides an overview of the latest studies on the expected performance of MEMPHYS in view of detailed estimates of its physics reach, mainly concerning neutrino beams

    Study of the pulse power supply unit for the four-horn system of the CERN to Frejus neutrino super beam

    Full text link
    The power supply studies for the four-horn system for the CERN to Fr\'ejus neutrino Super Beam oscillation experiment are discussed here. The power supply is being studied to meet the physics potential and the mega-watt (MW) power requirements of the proton driver of the Super Beam. A one-half sinusoid current waveform with a 350 kA maximum current and pulse length of 100 \mu s at 50 Hz frequency is generated and distributed to four-horns. In order to provide the necessary current needed to focus the charged mesons producing the neutrino beam, a bench of capacitors is charged at 50 Hz frequency to a +12 kV reference voltage and then discharged through a large switch to each horn via a set of strip-lines at the same rate. A current recovery stage allows to invert rapidly the negative voltage of the capacitor after the discharging stage in order to recuperate large part of the injected energy and thus to limit the power consuption. The energy recovery efficiency of that system is very high at 97%. For feasibility reasons, a modular architecture has been adopted with 8 modules connected in parallel to deliver 44 kA peak currents into the four-horn system.Comment: latex options change

    Sensitivity analysis of the probabilistic damage stability regulations for RoPax vessels

    Get PDF
    In the light of the newly developed harmonised probabilistic damage stability regulations, set to come into force in 2009, this article presents a systematic and thorough analysis of the sensitivity of the Attained Subdivision Index with reference to a wide range of related design parameters. The sensitivity of the probabilistic regulations was investigated for a typical large RoPax vessel, with variation of parameters, such as the number, positioning and local optimisation of transverse bulkheads; the presence and position of longitudinal bulkheads below the main vehicle deck; the presence of side casings; and the height of the main deck and double bottom. The effects of water on deck and of operational parameters (draught, centre of gravity and trim) were also investigated. The results of the study, presented in graphical form, can provide valuable assistance to the designer when determining subdivision characteristics at the very early stage of the design process, resulting in optimal, efficient and safe ships

    Neutrino oscillations: measuring θ13\theta_{13} including its sign

    Full text link
    In neutrino phenomenology, terms in the oscillation probabilities linear in sinθ13\sin \theta_{13} lead naturally to the question ``How can one measure θ13\theta_{13} including its sign?'' Here we demonstrate analytically and with a simulation of neutrino data that Peμ{\mathcal P}_{e\mu} and {\mathcal {P}_{\mu\mu} at L/E=2π/Δ21L/E = 2\pi/\Delta_{21} exhibit significant linear dependence on θ13\theta_{13} in the limit of vacuum oscillations. Measurements at this particular value of L/EL/E can thus determine not only θ13\theta_{13} but also its sign, if CP violation is small.Comment: 5 pages, 5 figure

    The use the a high intensity neutrino beam from the ESS proton linac for measurement of neutrino CP violation and mass hierarchy

    Get PDF
    It is proposed to complement the ESS proton linac with equipment that would enable the production, concurrently with the production of the planned ESS beam used for neutron production, of a 5 MW beam of 1023^{23} 2.5 GeV protons per year in microsecond short pulses to produce a neutrino Super Beam, and to install a megaton underground water Cherenkov detector in a mine to detect νe\nu_e appearance in the produced νμ\nu_\mu beam. Results are presented of preliminary calculations of the sensitivity to neutrino CP violation and the mass hierarchy as a function of the neutrino baseline. The results indicate that, with 8 years of data taking with an antineutrino beam and 2 years with a neutrino beam and a baseline distance of around 400 km, CP violation could be discovered at 5 σ\sigma (3 σ\sigma) confidence level in 48% (73%) of the total CP violation angular range. With the same baseline, the neutrino mass hierarchy could be determined at 3 σ\sigma level over most of the total CP violation angular range. There are several underground mines with a depth of more than 1000 m, which could be used for the creation of the underground site for the neutrino detector and which are situated within or near the optimal baseline range
    corecore