42 research outputs found

    Vocabulary Learning in a Yorkshire Terrier: Slow Mapping of Spoken Words

    Get PDF
    Rapid vocabulary learning in children has been attributed to “fast mapping”, with new words often claimed to be learned through a single presentation. As reported in 2004 in Science a border collie (Rico) not only learned to identify more than 200 words, but fast mapped the new words, remembering meanings after just one presentation. Our research tests the fast mapping interpretation of the Science paper based on Rico's results, while extending the demonstration of large vocabulary recognition to a lap dog. We tested a Yorkshire terrier (Bailey) with the same procedures as Rico, illustrating that Bailey accurately retrieved randomly selected toys from a set of 117 on voice command of the owner. Second we tested her retrieval based on two additional voices, one male, one female, with different accents that had never been involved in her training, again showing she was capable of recognition by voice command. Third, we did both exclusion-based training of new items (toys she had never seen before with names she had never heard before) embedded in a set of known items, with subsequent retention tests designed as in the Rico experiment. After Bailey succeeded on exclusion and retention tests, a crucial evaluation of true mapping tested items previously successfully retrieved in exclusion and retention, but now pitted against each other in a two-choice task. Bailey failed on the true mapping task repeatedly, illustrating that the claim of fast mapping in Rico had not been proven, because no true mapping task had ever been conducted with him. It appears that the task called retention in the Rico study only demonstrated success in retrieval by a process of extended exclusion

    An Investigation into the Cognition Behind Spontaneous String Pulling in New Caledonian Crows

    Get PDF
    The ability of some bird species to pull up meat hung on a string is a famous example of spontaneous animal problem solving. The “insight” hypothesis claims that this complex behaviour is based on cognitive abilities such as mental scenario building and imagination. An operant conditioning account, in contrast, would claim that this spontaneity is due to each action in string pulling being reinforced by the meat moving closer and remaining closer to the bird on the perch. We presented experienced and naïve New Caledonian crows with a novel, visually restricted string-pulling problem that reduced the quality of visual feedback during string pulling. Experienced crows solved this problem with reduced efficiency and increased errors compared to their performance in standard string pulling. Naïve crows either failed or solved the problem by trial and error learning. However, when visual feedback was available via a mirror mounted next to the apparatus, two naïve crows were able to perform at the same level as the experienced group. Our results raise the possibility that spontaneous string pulling in New Caledonian crows may not be based on insight but on operant conditioning mediated by a perceptual-motor feedback cycle

    Dominant Cone-Rod Dystrophy: A Mouse Model Generated by Gene Targeting of the GCAP1/Guca1a Gene

    Get PDF
    Cone dystrophy 3 (COD3) is a severe dominantly inherited retinal degeneration caused by missense mutations in GUCA1A, the gene encoding Guanylate Cyclase Activating Protein 1 (GCAP1). The role of GCAP1 in controlling cyclic nucleotide levels in photoreceptors has largely been elucidated using knock-out mice, but the disease pathology in these mice cannot be extrapolated directly to COD3 as this involves altered, rather than loss of, GCAP1 function. Therefore, in order to evaluate the pathology of this dominant disorder, we have introduced a point mutation into the murine Guca1a gene that causes an E155G amino acid substitution; this is one of the disease-causing mutations found in COD3 patients. Disease progression in this novel mouse model of cone dystrophy was determined by a variety of techniques including electroretinography (ERG), retinal histology, immunohistochemistry and measurement of cGMP levels. It was established that although retinal development was normal up to 3 months of age, there was a subsequent progressive decline in retinal function, with a far greater alteration in cone than rod responses, associated with a corresponding loss of photoreceptors. In addition, we have demonstrated that accumulation of cyclic GMP precedes the observed retinal degeneration and is likely to contribute to the disease mechanism. Importantly, this knock-in mutant mouse has many features in common with the human disease, thereby making it an excellent model to further probe disease pathogenesis and investigate therapeutic interventions

    What You See Is What You Get? Exclusion Performances in Ravens and Keas

    Get PDF
    BACKGROUND:Among birds, corvids and parrots are prime candidates for advanced cognitive abilities. Still, hardly anything is known about cognitive similarities and dissimilarities between them. Recently, exclusion has gained increasing interest in comparative cognition. To select the correct option in an exclusion task, one option has to be rejected (or excluded) and the correct option may be inferred, which raises the possibility that causal understanding is involved. However, little is yet known about its evolutionary history, as only few species, and mainly mammals, have been studied. METHODOLOGY/PRINCIPAL FINDINGS:We tested ravens and keas in a choice task requiring the search for food in two differently shaped tubes. We provided the birds with partial information about the content of one of the two tubes and asked whether they could use this information to infer the location of the hidden food and adjust their searching behaviour accordingly. Additionally, this setup allowed us to investigate whether the birds would appreciate the impact of the shape of the tubes on the visibility of food. The keas chose the baited tube more often than the ravens. However, the ravens applied the more efficient strategy, choosing by exclusion more frequently than the keas. An additional experiment confirmed this, indicating that ravens and keas either differ in their cognitive skills or that they apply them differently. CONCLUSION:To our knowledge, this is the first study to demonstrate that corvids and parrots may perform differently in cognitive tasks, highlighting the potential impact of different selection pressures on the cognitive evolution of these large-brained birds

    Seeing the benefits of ceria

    No full text
    corecore