17 research outputs found

    Eukaryotic Initiation Factor 4E (eIF4E) and angiogenesis: prognostic markers for breast cancer

    Get PDF
    BACKGROUND: The overexpression of eukaryotic translation initiation factor 4E (eIF4E), a key regulator of protein synthesis, is involved in the malignant progression of human breast cancer. This study investigates the relationship between eIF4E and angiogenesis, as well as their prognostic impact in patients with human breast cancer. METHODS: Immunohistochemical staining was used to determine protein expression of eIF4E, vascular endothelial growth factor (VEGF), interleukin-8 (IL-8), and CD105 in a set of 122 formalin-fixed, paraffin-embedded primary breast cancer tissues. Expression of eIF4E in positive cells was characterized by cytoplasmic staining. Evaluation of VEGF and IL-8 in the same tissue established the angiogenic profiles, while CD105 was used as an indicator of microvessel density (MVD). RESULTS: A significant relationship was found between the level of eIF4E expression and histological grade (P = 0.016). VEGF, IL-8, and MVD were closely related to tumor grade (P = 0.003, P = 0.022, and P < 0.001, respectively) and clinical stage (P = 0.007, P = 0.048, and P < 0.001, respectively). Expression of eIF4E was also significantly correlated with VEGF (P = 0.007), IL-8 (P = 0.007), and MVD (P = 0.006). Patients overexpressing eIF4E had significantly worse overall (P = 0.01) and disease-free survival (P = 0.006). When eIF4E, histological grade, tumor stage, ER, PR, Her-2 status and the levels of VEGF, IL-8, MVD were included in a multivariate Cox regression analysis, eIF4E emerged as an independent prognostic factor for breast cancer (P = 0.001), along with stage (P = 0.005), node status (P = 0.046), and MVD (P = 0.004). CONCLUSION: These results suggest that higher eIF4E expression correlates with both angiogenesis and vascular invasion of cancer cells, and could therefore serve as a useful histological predictor for less favorable outcome in breast cancer patients, as well as represent a potential therapeutic target

    In-situ evidence for dextral active motion at the Arabia-India plate boundary

    No full text
    International audienceThe Arabia-India plate boundary--also called theOwen fracture zone--is perhaps the least-known boundary among large tectonic plates1-6. Although it was identified early on as an example of a transform fault converting the divergent motion along the Carlsberg Ridge to convergent motion in the Himalayas7, its structure and rate of motion remains poorly constrained. Here we present the first direct evidence for active dextral strike-slip motion along this fault, based on seafloor multibeam mapping of the Arabia-India-Somalia triple junction in the northwest Indian Ocean. There is evidence for 12km of apparent strike-slip motion along the mapped segment of the Owen fracture zone, which is terminated to the south by a 50-km-wide pull-apart basin bounded by active faults. By evaluating these new constraints within the context of geodetic models of global plate motions, we determine a robust angular velocity for the Arabian plate relative to the Indian plate that predicts 2-4mmyr−1 dextral motion along the Owen fracture zone. This transformfault was probably initiated around 8 million years ago in response to a regional reorganization of plate velocities and directions8-11, which induced a change in configuration of the triple junction. Infrequent earthquakes of magnitude 7 and greater may occur along the Arabia-India plate boundary, unless deformation is in the formof aseismic creep

    The role of MNK proteins and eIF4E phosphorylation in breast cancer cell proliferation and survival

    No full text
    eIF4E is over-expressed in many tumours, including a high proportion of breast cancers. eIF4E is an oncogene, and signalling pathways which promote eIF4E activity represent potential targets for therapeutic intervention in cancer. MNKs phosphorylate eIF4E on serine 209, a modification that can be required for eIF4E-dependent cell transformation. There is therefore a clear requirement to determine the role of MNKs in the proliferation and survival of cells from the major human tumours, such as breast cancer. Phosphorylated eIF4E protein was readily detectable in some breast tumour samples, but was below the limits of detection in others. Of 6 breast cancer cell lines representing the major sub-types of breast cancer, phosphorylated eIF4E was readily detectable in 5 of them, with MCF-7 cells displaying markedly lower levels. Long term colony forming assays demonstrated that all the five lines with high levels of phosphorylated eIF4E were highly sensitive to a MNK inhibitor. In short term assays, a range of responses was revealed. MCF-7 cells were insensitive in both assays. The anti-proliferative effects of the MNK inhibitor in breast cancer cells are primarily cytostatic, rather than cytotoxic, and are potentially due to the inhibition of cyclin D1 synthesis. Our data provide evidence that the sensitivity of breast cancer cells to MNK inhibition may correlate with baseline levels of eIF4E phosphorylation, and suggest that a proportion of breast cancers could be sensitive to inhibiting MNK kinase activity, and that the presence of phosphorylated eIF4E could provide a biomarker for the identification of responsive tumours.<br/
    corecore