47 research outputs found

    Multisensory Integration and Attention in Autism Spectrum Disorder: Evidence from Event-Related Potentials

    Get PDF
    Successful integration of various simultaneously perceived perceptual signals is crucial for social behavior. Recent findings indicate that this multisensory integration (MSI) can be modulated by attention. Theories of Autism Spectrum Disorders (ASDs) suggest that MSI is affected in this population while it remains unclear to what extent this is related to impairments in attentional capacity. In the present study Event-related potentials (ERPs) following emotionally congruent and incongruent face-voice pairs were measured in 23 high-functioning, adult ASD individuals and 24 age- and IQ-matched controls. MSI was studied while the attention of the participants was manipulated. ERPs were measured at typical auditory and visual processing peaks, namely, P2 and N170. While controls showed MSI during divided attention and easy selective attention tasks, individuals with ASD showed MSI during easy selective attention tasks only. It was concluded that individuals with ASD are able to process multisensory emotional stimuli, but this is differently modulated by attention mechanisms in these participants, especially those associated with divided attention. This atypical interaction between attention and MSI is also relevant to treatment strategies, with training of multisensory attentional control possibly being more beneficial than conventional sensory integration therapy

    Behavioral and Autonomic Responses to Acute Restraint Stress Are Segregated within the Lateral Septal Area of Rats

    Get PDF
    Background: The Lateral Septal Area (LSA) is involved with autonomic and behavior responses associated to stress. In rats, acute restraint (RS) is an unavoidable stress situation that causes autonomic (body temperature, mean arterial pressure (MAP) and heart rate (HR) increases) and behavioral (increased anxiety-like behavior) changes in rats. The LSA is one of several brain regions that have been involved in stress responses. The aim of the present study was to investigate if the neurotransmission blockade in the LSA would interfere in the autonomic and behavioral changes induced by RS. Methodology/Principal Findings: Male Wistar rats with bilateral cannulae aimed at the LSA, an intra-abdominal datalogger (for recording internal body temperature), and an implanted catheter into the femoral artery (for recording and cardiovascular parameters) were used. They received bilateral microinjections of the non-selective synapse blocker cobalt chloride (CoCl2, 1 mM / 100 nL) or vehicle 10 min before RS session. The tail temperature was measured by an infrared thermal imager during the session. Twenty-four h after the RS session the rats were tested in the elevated plus maze (EPM). Conclusions/Significance: Inhibition of LSA neurotransmission reduced the MAP and HR increases observed during RS. However, no changes were observed in the decrease in skin temperature and increase in internal body temperature observed during this period. Also, LSA inhibition did not change the anxiogenic effect induced by RS observed 24 h later in the EPM. The present results suggest that LSA neurotransmission is involved in the cardiovascular but not the temperatur

    T2-weighted cardiovascular magnetic resonance in acute cardiac disease

    Get PDF
    Cardiovascular magnetic resonance (CMR) using T2-weighted sequences can visualize myocardial edema. When compared to previous protocols, newer pulse sequences with substantially improved image quality have increased its clinical utility. The assessment of myocardial edema provides useful incremental diagnostic and prognostic information in a variety of clinical settings associated with acute myocardial injury. In patients with acute chest pain, T2-weighted CMR is able to identify acute or recent myocardial ischemic injury and has been employed to distinguish acute coronary syndrome (ACS) from non-ACS as well as acute from chronic myocardial infarction

    Astrocytes: biology and pathology

    Get PDF
    Astrocytes are specialized glial cells that outnumber neurons by over fivefold. They contiguously tile the entire central nervous system (CNS) and exert many essential complex functions in the healthy CNS. Astrocytes respond to all forms of CNS insults through a process referred to as reactive astrogliosis, which has become a pathological hallmark of CNS structural lesions. Substantial progress has been made recently in determining functions and mechanisms of reactive astrogliosis and in identifying roles of astrocytes in CNS disorders and pathologies. A vast molecular arsenal at the disposal of reactive astrocytes is being defined. Transgenic mouse models are dissecting specific aspects of reactive astrocytosis and glial scar formation in vivo. Astrocyte involvement in specific clinicopathological entities is being defined. It is now clear that reactive astrogliosis is not a simple all-or-none phenomenon but is a finely gradated continuum of changes that occur in context-dependent manners regulated by specific signaling events. These changes range from reversible alterations in gene expression and cell hypertrophy with preservation of cellular domains and tissue structure, to long-lasting scar formation with rearrangement of tissue structure. Increasing evidence points towards the potential of reactive astrogliosis to play either primary or contributing roles in CNS disorders via loss of normal astrocyte functions or gain of abnormal effects. This article reviews (1) astrocyte functions in healthy CNS, (2) mechanisms and functions of reactive astrogliosis and glial scar formation, and (3) ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions
    corecore