158 research outputs found

    Effect of Formation Hydrodynamics on Mechanical Properties of Container Materials

    Get PDF
    The objectives of this study were to compare the mechanical and physical properties of the sheets made using the Vortigen technology (a non-conventional technique that creates very high number vortices in a fluid flow mixture of water, fibers, and chemical additives) with those produced from a conventional method of papermaking and to provide insight into the impact of formation hydrodynamics on sheet properties. The results of formation, ultrasonic stiffness, and creep/accelerated creep measurements of the Vortigen sheets as compared with the standard sheets are presented. Samples of Vortigen (V) and standard (S) sheets (4 samples from each group) were obtained from papers produced on a pilot machine. Formation measurements (that provides a measure of density distribution in a sheet) were performed using a formation tester which is based on beta particle absorption. Measurements of creep and accelerated creep were made at a constant relative humidity (RH) of 80% and a cyclic RH between 30% and 80% for strips cut along the machine direction (MD) and cross machine direction (CD, which is perpendicular to MD) directions. There was a significant difference between the distributions of basis weights for the two types of papers. The mean coefficient of variation in grammage for the V samples was 8.97 while that for the S samples was 12.60. The mean MD/CD stiffness ratios for the V and S samples were 1.1 and 1.6, respectively. The mean Z-direction longitudinal specific stiffness corresponding to the V samples were 18% greater than the corresponding value for the S samples. The MD strips from the S samples exhibited the smallest creep while the CD strips from the S samples exhibited the largest creep. Creep values corresponding to the Vortigen sheets were between the extreme values of the standard samples. The results of this study indicated that because of the influence of formation hydrodynamics on fiber orientation and formation, in general, the stiffness properties (and specifically the CD stiffness) of the Vortigen samples were greater than those of the standard samples

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    A holistic multi evidence approach to study the fragmentation behaviour of crystalline mannitol

    Get PDF
    Mannitol is an essential excipient employed in orally disintegrating tablets due to its high palatability. However its fundamental disadvantage is its fragmentation during direct compression, producing mechanically weak tablets. The primary aim of this study was to assess the fracture behaviour of crystalline mannitol in relation to the energy input during direct compression, utilising ball milling as the method of energy input, whilst assessing tablet characteristics of post-milled powders. Results indicated that crystalline mannitol fractured at the hydrophilic (011) plane, as observed through SEM, alongside a reduction in dispersive surface energy. Disintegration times of post-milled tablets were reduced due to the exposure of the hydrophilic plane, whilst more robust tablets were produced. This was shown through higher tablet hardness and increased plastic deformation profiles of the post-milled powders, as observed with a lower yield pressure through an out-of-die Heckel analysis. Evaluation of crystal state using x-ray diffraction/differential scanning calorimetry showed that mannitol predominantly retained the β-polymorph; however x-ray diffraction provided a novel method to calculate energy input into the powders during ball milling. It can be concluded that particle size reduction is a pragmatic strategy to overcome the current limitation of mannitol fragmentation and provide improvements in tablet properties

    Probing the HIV-1 Genomic RNA Trafficking Pathway and Dimerization by Genetic Recombination and Single Virion Analyses

    Get PDF
    Once transcribed, the nascent full-length RNA of HIV-1 must travel to the appropriate host cell sites to be translated or to find a partner RNA for copackaging to form newly generated viruses. In this report, we sought to delineate the location where HIV-1 RNA initiates dimerization and the influence of the RNA transport pathway used by the virus on downstream events essential to viral replication. Using a cell-fusion-dependent recombination assay, we demonstrate that the two RNAs destined for copackaging into the same virion select each other mostly within the cytoplasm. Moreover, by manipulating the RNA export element in the viral genome, we show that the export pathway taken is important for the ability of RNA molecules derived from two viruses to interact and be copackaged. These results further illustrate that at the point of dimerization the two main cellular export pathways are partially distinct. Lastly, by providing Gag in trans, we have demonstrated that Gag is able to package RNA from either export pathway, irrespective of the transport pathway used by the gag mRNA. These findings provide unique insights into the process of RNA export in general, and more specifically, of HIV-1 genomic RNA trafficking

    Identifying barriers and improving communication between cancer service providers and Aboriginal patients and their families: the perspective of service providers

    Get PDF
    BACKGROUND: Aboriginal Australians experience poorer outcomes from cancer compared to the non-Aboriginal population. Some progress has been made in understanding Aboriginal Australians’ perspectives about cancer and their experiences with cancer services. However, little is known of cancer service providers’ (CSPs) thoughts and perceptions regarding Aboriginal patients and their experiences providing optimal cancer care to Aboriginal people. Communication between Aboriginal patients and non-Aboriginal health service providers has been identified as an impediment to good Aboriginal health outcomes. This paper reports on CSPs’ views about the factors impairing communication and offers practical strategies for promoting effective communication with Aboriginal patients in Western Australia (WA).METHODS: A qualitative study involving in-depth interviews with 62 Aboriginal and non-Aboriginal CSPs from across WA was conducted between March 2006 - September 2007 and April-October 2011. CSPs were asked to share their experiences with Aboriginal patients and families experiencing cancer. Thematic analysis was carried out. Our analysis was primarily underpinned by the socio-ecological model, but concepts of Whiteness and privilege, and cultural security also guided our analysis.RESULTS: CSPs’ lack of knowledge about the needs of Aboriginal people with cancer and Aboriginal patients’ limited understanding of the Western medical system were identified as the two major impediments to communication. For effective patient–provider communication, attention is needed to language, communication style, knowledge and use of medical terminology and cross-cultural differences in the concept of time. Aboriginal marginalization within mainstream society and Aboriginal people’s distrust of the health system were also key issues impacting on communication. Potential solutions to effective Aboriginal patient-provider communication included recruiting more Aboriginal staff, providing appropriate cultural training for CSPs, cancer education for Aboriginal stakeholders, continuity of care, avoiding use of medical jargon, accommodating patients’ psychosocial and logistical needs, and in-service coordination.CONCLUSION: Individual CSPs identified challenges in cross-cultural communication and their willingness to accommodate culture-specific needs within the wider health care system including better communication with Aboriginal patients. However, participants’ comments indicated a lack of concerted effort at the system level to address Aboriginal disadvantage in cancer outcomes

    Ocean currents shape the microbiome of Arctic marine sediments

    Get PDF
    Prokaryote communities were investigated on the seasonally stratified Alaska Beaufort Shelf (ABS). Water and sediment directly underlying water with origin in the Arctic, Pacific or Atlantic oceans were analyzed by pyrosequencing and length heterogeneity-PCR in conjunction with physicochemical and geographic distance data to determine what features structure ABS microbiomes. Distinct bacterial communities were evident in all water masses. Alphaproteobacteria explained similarity in Arctic surface water and Pacific derived water. Deltaproteobacteria were abundant in Atlantic origin water and drove similarity among samples. Most archaeal sequences in water were related to unclassified marine Euryarchaeota. Sediment communities influenced by Pacific and Atlantic water were distinct from each other and pelagic communities. Firmicutes and Chloroflexi were abundant in sediment, although their distribution varied in Atlantic and Pacific influenced sites. Thermoprotei dominated archaea in Pacific influenced sediments and Methanomicrobia dominated in methane-containing Atlantic influenced sediments. Length heterogeneity-PCR data from this study were analyzed with data from methane-containing sediments in other regions. Pacific influenced ABS sediments clustered with Pacific sites from New Zealand and Chilean coastal margins. Atlantic influenced ABS sediments formed another distinct cluster. Density and salinity were significant structuring features on pelagic communities. Porosity co-varied with benthic community structure across sites and methane did not. This study indicates that the origin of water overlying sediments shapes benthic communities locally and globally and that hydrography exerts greater influence on microbial community structure than the availability of methane

    Modified Habitats Influence Kelp Epibiota via Direct and Indirect Effects

    Get PDF
    Addition of man-made structures alters abiotic and biotic characteristics of natural habitats, which can influence abundances of biota directly and/or indirectly, by altering the ecology of competitors or predators. Marine epibiota in modified habitats were used to test hypotheses to distinguish between direct and indirect processes. In Sydney Harbour, kelps on pier-pilings supported greater covers of bryozoans, particularly of the non-indigenous species Membranipora membranacea, than found on natural reefs. Pilings influenced these patterns and processes directly due to the provision of shade and indirectly by altering abundances of sea-urchins which, in turn, affected covers of bryozoans. Indirect effects were more important than direct effects. This indicates that artificial structures affect organisms living on secondary substrata in complex ways, altering the biodiversity and indirectly affecting abundances of epibiota. Understanding how these components of habitats affect ecological processes is necessary to allow sensible prediction of the effects of modifying habitats on the ecology of organisms

    Large-scale mass wasting in the western Indian Ocean constrains onset of East African rifting

    Get PDF
    Faulting and earthquakes occur extensively along the flanks of the East African Rift System, including an offshore branch in the western Indian Ocean, resulting in remobilization of sediment in the form of landslides. To date, constraints on the occurrence of submarine landslides at margin scale are lacking, leaving unanswered a link between rifting and slope instability. Here, we show the first overview of landslide deposits in the post-Eocene stratigraphy of the Tanzania margin and we present the discovery of one of the biggest landslides on Earth: the Mafia mega-slide. The emplacement of multiple landslides, including the Mafia mega-slide, during the early-mid Miocene is coeval with cratonic rifting in Tanzania, indicating that plateau uplift and rifting in East Africa triggered large and potentially tsunamigenic landslides likely through earthquake activity and enhanced sediment supply. This study is a first step to evaluate the risk associated with submarine landslides in the region

    HIV-1 infected monozygotic twins: a tale of two outcomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Replicate experiments are often difficult to find in evolutionary biology, as this field is inherently an historical science. However, viruses, bacteria and phages provide opportunities to study evolution in both natural and experimental contexts, due to their accelerated rates of evolution and short generation times. Here we investigate HIV-1 evolution by using a natural model represented by monozygotic twins infected synchronically at birth with an HIV-1 population from a shared blood transfusion source. We explore the evolutionary processes and population dynamics that shape viral diversity of HIV in these monozygotic twins.</p> <p>Results</p> <p>Despite the identical host genetic backdrop of monozygotic twins and the identical source and timing of the HIV-1 inoculation, the resulting HIV populations differed in genetic diversity, growth rate, recombination rate, and selection pressure between the two infected twins.</p> <p>Conclusions</p> <p>Our study shows that the outcome of evolution is strikingly different between these two "replicates" of viral evolution. Given the identical starting points at infection, our results support the impact of random epigenetic selection in early infection dynamics. Our data also emphasize the need for a better understanding of the impact of host-virus interactions in viral evolution.</p
    corecore