46 research outputs found

    Hybrid Model for the Analysis of Human Gait: A Non-linear Approach

    Get PDF
    In this work, a generalization of the study of the human gait was made from already existent models in the literature, like models of Keller and Kockshenev. In this hybrid model, a strategy of metabolic energy minimization is combined in a race process, with a non-linear description of the movement of the mass center’s libration, trying to reproduce the behavior of the walk-run transition. The results of the experimental data, for different speed regimes, indicate that the perimeter of the trajectory of the mass center is a relevant quantity in the quantification of this dynamic. An experimental procedure was put into practice in collaboration with the research group in Biomedical Engineering, Basic Sciences and Laboratories of the Manuela Beltrán University in Bogotá, Colombia

    Breast tumour cell-induced down-regulation of type I collagen mRNA in fibroblasts

    Get PDF
    This study investigated the modulation of type I collagen gene expression in normal fibroblasts by breast tumour cells. Northern analysis of total RNA extracted from stages I, II and III breast tumour tissue revealed that collagen mRNA levels were elevated in stage I tumours compared to the adjacent normal breast tissues, whereas they were decreased in stages II and III breast tumours. This aberrant collagen gene expression was confirmed by non-radioactive RNA:RNA in situ hybridization analysis of 30 breast carcinomas which localized the production of type I collagen mRNA to the stromal fibroblasts within the vicinity of the tumour cells. In order to determine whether the tumour cells were directly responsible for this altered collagen production by the adjacent fibroblasts, breast tumour cell lines were co-cultured with normal fibroblasts for in vitro assessment of collagen and steady-state collagen RNA levels. Co-culture of tumour cells and normal fibroblasts in the same dish resulted in down-regulation of collagen mRNA and protein. Treatment of the fibroblasts with tumour-cell conditioned medium also resulted in decreased collagen protein levels but the mRNA levels, however, remained unaltered. These results suggested that the tumour cells either secrete a labile ‘factor’, or express a cell surface protein requiring direct contact with the fibroblasts, resulting in down-regulation of collagen gene expression. Modulation of the ECM is a common characteristic of invading tumour cells and usually involves increased production of collagenases by the tumour cells or stromal fibroblasts. This study showed that tumour cells were also able to modulate collagen mRNA production by stromal fibroblasts, which may facilitate tumour cell invasion and metastasis. © 1999 Cancer Research Campaig

    Oak canopy arthropod communities: which factors shape its structure?

    Full text link
    corecore