10 research outputs found

    Statistical Signatures of Nanoflare Activity. III. Evidence of Enhanced Nanoflaring Rates in Fully Convective stars as Observed by the NGTS

    No full text
    Abstract Previous examinations of fully convective M-dwarf stars have highlighted enhanced rates of nanoflare activity on these distant stellar sources. However, the specific role the convective boundary, which is believed to be present for spectral types earlier than M2.5V, plays on the observed nanoflare rates is not yet known. Here, we utilize a combination of statistical and Fourier techniques to examine M-dwarf stellar lightcurves that lie on either side of the convective boundary. We find that fully convective M2.5V (and later subtypes) stars have greatly enhanced nanoflare rates compared with their pre-dynamo mode-transition counterparts. Specifically, we derive a flaring power-law index in the region of 3.00 ± 0.20, alongside a decay timescale of 200 ± 100 s for M2.5V and M3V stars, matching those seen in prior observations of similar stellar subtypes. Interestingly, M4V stars exhibit longer decay timescales of 450 ± 50 s, along with an increased power-law index of 3.10 ± 0.18, suggesting an interplay between the rate of nanoflare occurrence and the intrinsic plasma parameters, e.g., the underlying Lundquist number. In contrast, partially convective (i.e., earlier subtypes from M0V to M2V) M-dwarf stars exhibit very weak nanoflare activity, which is not easily identifiable using statistical or Fourier techniques. This suggests that fully convective stellar atmospheres favor small-scale magnetic reconnection, leading to implications for the flare-energy budgets of these stars. Understanding why small-scale reconnection is enhanced in fully convective atmospheres may help solve questions relating to the dynamo behavior of these stellar sources

    NGTS clusters survey – V. Rotation in the Orion star-forming complex

    No full text
    We present a study of rotation across 30 square degrees of the Orion Star-forming Complex, following a ∌200 d photometric monitoring campaign by the Next Generation Transit Survey (NGTS). From 5749 light curves of Orion members, we report periodic signatures for 2268 objects and analyse rotation period distributions as a function of colour for 1789 stars with spectral types F0–M5. We select candidate members of Orion using Gaia data and assign our targets to kinematic sub-groups. We correct for interstellar extinction on a star-by-star basis and determine stellar and cluster ages using magnetic and non-magnetic stellar evolutionary models. Rotation periods generally lie in the range 1–10 d, with only 1.5 per cent of classical T Tauri stars or Class I/II young stellar objects rotating with periods shorter than 1.8 d, compared with 14 per cent of weak-line T Tauri stars or Class III objects. In period–colour space, the rotation period distribution moves towards shorter periods among low-mass (>M2) stars of age 3–6 Myr, compared with those at 1–3 Myr, with no periods longer than 10 d for stars later than M3.5. This could reflect a mass-dependence for the dispersal of circumstellar discs. Finally, we suggest that the turnover (from increasing to decreasing periods) in the period–colour distributions may occur at lower mass for the older-aged population: ∌K5 spectral type at 1–3 Myr shifting to ∌M1 at 3–6 Myr

    The return of the spin period in DW Cnc and evidence of new high state outbursts

    No full text
    DW Cnc is an intermediate polar which has previously been observed in both high and low states. Observations of the high state of DW Cnc have previously revealed a spin period at ∌38.6 min, however, observations from the 2018 to 2019 low state showed no evidence of the spin period. We present results from our analysis of 12 s cadence photometric data collected by Next Generation Transit Survey of DW Cnc during the high state which began in 2019. Following the previously reported suppression of the spin period signal, we identify the return of this signal during the high state, consistent with previous observations of it. We identify this as the restarting of accretion during the high state. We further identified three short outbursts lasting ∌1 d in DW Cnc with a mean recurrence time of ∌60 d and an amplitude of ∌1 mag. These are the first outbursts identified in DW Cnc since 2008. Due to the short nature of these events, we identify them not as a result of accretion instabilities but instead either from instabilities originating from the interaction of the magnetorotational instability in the accretion disc and the magnetic field generated by the white dwarf or the result of magnetic gating

    The return of the spin period in DW Cnc and evidence of new high state outbursts

    Full text link
    DW Cnc is an intermediate polar which has previously been observed in both high and low states. Observations of the high state of DW Cnc have previously revealed a spin period at ∌38.6 min, however, observations from the 2018 to 2019 low state showed no evidence of the spin period. We present results from our analysis of 12 s cadence photometric data collected by Next Generation Transit Survey of DW Cnc during the high state which began in 2019. Following the previously reported suppression of the spin period signal, we identify the return of this signal during the high state, consistent with previous observations of it. We identify this as the restarting of accretion during the high state. We further identified three short outbursts lasting ∌1 d in DW Cnc with a mean recurrence time of ∌60 d and an amplitude of ∌1 mag. These are the first outbursts identified in DW Cnc since 2008. Due to the short nature of these events, we identify them not as a result of accretion instabilities but instead either from instabilities originating from the interaction of the magnetorotational instability in the accretion disc and the magnetic field generated by the white dwarf or the result of magnetic gating

    WASP-131 b with ESPRESSO – I. A bloated sub-Saturn on a polar orbit around a differentially rotating solar-type star

    No full text
    In this paper, we present observations of two high-resolution transit data sets obtained with ESPRESSO of the bloated sub-Saturn planet WASP-131 b. We have simultaneous photometric observations with NGTS and EulerCam. In addition, we utilized photometric light curves from TESS, WASP, EulerCam, and TRAPPIST of multiple transits to fit for the planetary parameters and update the ephemeris. We spatially resolve the stellar surface of WASP-131 utilizing the Reloaded Rossiter McLaughlin technique to search for centre-to-limb convective variations, stellar differential rotation, and to determine the star–planet obliquity for the first time. We find WASP-131 is misaligned on a nearly retrograde orbit with a projected obliquity of λ=162.4+1.3−1.2∘\lambda = 162.4\substack{+1.3 \\ -1.2}^{\circ } . In addition, we determined a stellar differential rotation shear of α = 0.61 ± 0.06 and disentangled the stellar inclination (i∗=40.9+13.3−8.5∘i_* = 40.9\substack{+13.3 \\ -8.5}^{\circ } ) from the projected rotational velocity, resulting in an equatorial velocity of veq=7.7+1.5−1.3v_{\rm {eq}} = 7.7\substack{+1.5 \\ -1.3} km s−1. In turn, we determined the true 3D obliquity of ψ=123.7+12.8−8.0∘\psi = 123.7\substack{+12.8 \\ -8.0}^{\circ } , meaning the planet is on a perpendicular/polar orbit. Therefore, we explored possible mechanisms for the planetary system’s formation and evolution. Finally, we searched for centre-to-limb convective variations where there was a null detection, indicating that centre-to-limb convective variations are not prominent in this star or are hidden within red noise.</p

    Association Between Patient Factors and the Effectiveness of Wearable Trackers at Increasing the Number of Steps per Day Among Adults With Cardiometabolic Conditions: Meta-analysis of Individual Patient Data From Randomized Controlled Trials

    No full text
    BACKGROUND: Current evidence supports the use of wearable trackers by people with cardiometabolic conditions. However, as the health benefits are small and confounded by heterogeneity, there remains uncertainty as to which patient groups are most helped by wearable trackers. OBJECTIVE: This study examined the effects of wearable trackers in patients with cardiometabolic conditions to identify subgroups of patients who most benefited and to understand interventional differences. METHODS: We obtained individual participant data from randomized controlled trials of wearable trackers that were conducted before December 2020 and measured steps per day as the primary outcome in participants with cardiometabolic conditions including diabetes, overweight or obesity, and cardiovascular disease. We used statistical models to account for clustering of participants within trials and heterogeneity across trials to estimate mean differences with the 95% CI. RESULTS: Individual participant data were obtained from 9 of 25 eligible randomized controlled trials, which included 1481 of 3178 (47%) total participants. The wearable trackers revealed that over the median duration of 12 weeks, steps per day increased by 1656 (95% CI 918-2395), a significant change. Greater increases in steps per day from interventions using wearable trackers were observed in men (interaction coefficient -668, 95% CI -1157 to -180), patients in age categories over 50 years (50-59 years: interaction coefficient 1175, 95% CI 377-1973; 60-69 years: interaction coefficient 981, 95% CI 222-1740; 70-90 years: interaction coefficient 1060, 95% CI 200-1920), White patients (interaction coefficient 995, 95% CI 360-1631), and patients with fewer comorbidities (interaction coefficient -517, 95% CI -1188 to -11) compared to women, those aged below 50, non-White patients, and patients with multimorbidity. In terms of interventional differences, only face-to-face delivery of the tracker impacted the effectiveness of the interventions by increasing steps per day. CONCLUSIONS: In patients with cardiometabolic conditions, interventions using wearable trackers to improve steps per day mostly benefited older White men without multimorbidity. TRIAL REGISTRATION: PROSPERO CRD42019143012; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=143012

    The Hot Neptune WASP-166 b with ESPRESSO - I. Refining the planetary architecture and stellar variability

    No full text
    In this paper, we present high-resolution spectroscopic transit observations from ESPRESSO of the super-Neptune WASP-166 b. In addition to spectroscopic ESPRESSO data, we analyse photometric data from TESS of six WASP-166 b transits along with simultaneous NGTS observations of the ESPRESSO runs. These observations were used to fit for the planetary parameters as well as assessing the level of stellar activity (e.g. spot crossings, flares) present during the ESPRESSO observations. We utilize the reloaded Rossiter McLaughlin (RRM) technique to spatially resolve the stellar surface, characterizing the centre-to-limb convection-induced variations, and to refine the star–planet obliquity. We find WASP-166 b has a projected obliquity of λ=−15.52 +2.85 −2.76 ∘ and vsin (i) = 4.97 ± 0.09 km s−1 which is consistent with the literature. We were able to characterize centre-to-limb convective variations as a result of granulation on the surface of the star on the order of a few km s−1 for the first time. We modelled the centre-to-limb convective variations using a linear, quadratic, and cubic model with the cubic being preferred. In addition, by modelling the differential rotation and centre-to-limb convective variations simultaneously, we were able to retrieve a potential antisolar differential rotational shear (α ∌ −0.5) and stellar inclination (i* either 42.03 +9.13 −9.60 ∘ or 133.64 +8.42 −7.98 ∘ if the star is pointing towards or away from us). Finally, we investigate how the shape of the cross-correlation functions change as a function of limb angle and compare our results to magnetohydrodynamic simulations.</p

    An old warm Jupiter orbiting the metal-poor G-dwarf TOI-5542

    No full text
    We report the discovery of a 1.32-0.10+0.10 MJup planet orbiting on a 75.12 day period around the G3V 10.8-3.6+2.1 Gyr old star TOI-5542 (TIC 466206508; TYC 9086-1210-1). The planet was first detected by the Transiting Exoplanet Survey Satellite (TESS) as a single transit event in TESS Sector 13. A second transit was observed 376 days later in TESS Sector 27. The planetary nature of the object has been confirmed by ground-based spectroscopic and radial velocity observations from the CORALIE and HARPS spectrographs. A third transit event was detected by the ground-based facilities NGTS, EulerCam, and SAAO. We find the planet has a radius of 1.009-0.035+0.036 RJup and an insolation of 9.6-0.8+0.9 S⊕, along with a circular orbit that most likely formed via disk migration or in situ formation, rather than high-eccentricity migration mechanisms. Our analysis of the HARPS spectra yields a host star metallicity of [Fe/H] = -0.21 ± 0.08, which does not follow the traditional trend of high host star metallicity for giant planets and does not bolster studies suggesting a difference among low- and high-mass giant planet host star metallicities. Additionally, when analyzing a sample of 216 well-characterized giant planets, we find that both high masses (4 MJup 10 days) and hot (P 0.1). TOI-5542b is one of the oldest known warm Jupiters and it is cool enough to be unaffected by inflation due to stellar incident flux, making it a valuable contribution in the context of planetary composition and formation studies

    NGTS-21b: an inflated Super-Jupiter orbiting a metal-poor K dwarf

    Full text link
    We report the discovery of NGTS-21b , a massive hot Jupiter orbiting a low-mass star as part of the Next Generation Transit Survey (NGTS). The planet has a mass and radius of 2.36 ± 0.21 MJ and 1.33 ± 0.03 RJ, and an orbital period of 1.543 d. The host is a K3V (Teff = 4660 ± 41 K) metal-poor ([Fe/H] = −0.26 ± 0.07 dex) dwarf star with a mass and radius of 0.72 ± 0.04 M⊙ and 0.86 ± 0.04R⊙. Its age and rotation period of 10.02+3.29−7.30 Gyr and 17.88 ± 0.08 d, respectively, are in accordance with the observed moderately low-stellar activity level. When comparing NGTS-21b with currently known transiting hot Jupiters with similar equilibrium temperatures, it is found to have one of the largest measured radii despite its large mass. Inflation-free planetary structure models suggest the planet’s atmosphere is inflated by ∌21 per cent⁠, while inflationary models predict a radius consistent with observations, thus pointing to stellar irradiation as the probable origin of NGTS-21b’s radius inflation. Additionally, NGTS-21b’s bulk density (1.25 ± 0.15 g cm–3) is also amongst the largest within the population of metal-poor giant hosts ([Fe/H] < 0.0), helping to reveal a falling upper boundary in metallicity–planet density parameter space that is in concordance with core accretion formation models. The discovery of rare planetary systems such as NGTS-21 greatly contributes towards better constraints being placed on the formation and evolution mechanisms of massive planets orbiting low-mass stars.</p

    Early Release Science of the exoplanet WASP-39b with JWST NIRCam

    No full text
    Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres is a fundamental step towards constraining the dominant chemical processes at work and, if in equilibrium, revealing planet formation histories. Transmission spectroscopy (for example, refs. 1,2) provides the necessary means by constraining the abundances of oxygen- and carbon-bearing species; however, this requires broad wavelength coverage, moderate spectral resolution and high precision, which, together, are not achievable with previous observatories. Now that JWST has commenced science operations, we are able to observe exoplanets at previously uncharted wavelengths and spectral resolutions. Here we report time-series observations of the transiting exoplanet WASP-39b using JWST’s Near InfraRed Camera (NIRCam). The long-wavelength spectroscopic and short-wavelength photometric light curves span 2.0–4.0 micrometres, exhibit minimal systematics and reveal well defined molecular absorption features in the planet’s spectrum. Specifically, we detect gaseous water in the atmosphere and place an upper limit on the abundance of methane. The otherwise prominent carbon dioxide feature at 2.8 micrometres is largely masked by water. The best-fit chemical equilibrium models favour an atmospheric metallicity of 1–100-times solar (that is, an enrichment of elements heavier than helium relative to the Sun) and a substellar C/O ratio. The inferred high metallicity and low C/O ratio may indicate significant accretion of solid materials during planet formation (for example, refs. 3,4,) or disequilibrium processes in the upper atmosphere (for example, refs. 5,6)
    corecore