63,266 research outputs found

    Dr. N. Rudraiah : a biobibliometric study

    Get PDF
    Dr. Rudraiah has worked in various fields in applied mathenlatics like fluid mechanics, magnetohydrodynamics, electrodynamics and smart materals of nanostructures. In his 43 pears of productive life, he has collaborated with 102 colleagues and students and has published 271 papers during 1962-2004. The collaboration co-efficient is 0.54. Highest collaborations were with M. Venkatachalappa (31), and B.C. Chandrasekhara (21). The core journals publishing his papers were: Indian Journal of Pure and Applied Mathematics, Current Science, International Journal of Heat and Mass Transfer, Acta Mechanica, Journal of Fluid Mechanics, Proc. Royal Cambridge Society of London and Physics of Fluid

    Selective gas phase hydrogenation of nitroarenes over Mo2C-supported Au–Pd

    Get PDF
    Open Access via RSC Gold 4 Gold Financial support to Dr. X. Wang through the Overseas Research Students Award Scheme (ORSAS) is acknowledged. Dr. N. Perret also acknowledges financial support from COST Action MP0903 Nanoalloys.Peer reviewedPublisher PD

    A Novel Metric Approach Evaluation For The Spatial Enhancement Of Pan-Sharpened Images

    Full text link
    Various and different methods can be used to produce high-resolution multispectral images from high-resolution panchromatic image (PAN) and low-resolution multispectral images (MS), mostly on the pixel level. The Quality of image fusion is an essential determinant of the value of processing images fusion for many applications. Spatial and spectral qualities are the two important indexes that used to evaluate the quality of any fused image. However, the jury is still out of fused image's benefits if it compared with its original images. In addition, there is a lack of measures for assessing the objective quality of the spatial resolution for the fusion methods. So, an objective quality of the spatial resolution assessment for fusion images is required. Therefore, this paper describes a new approach proposed to estimate the spatial resolution improve by High Past Division Index (HPDI) upon calculating the spatial-frequency of the edge regions of the image and it deals with a comparison of various analytical techniques for evaluating the Spatial quality, and estimating the colour distortion added by image fusion including: MG, SG, FCC, SD, En, SNR, CC and NRMSE. In addition, this paper devotes to concentrate on the comparison of various image fusion techniques based on pixel and feature fusion technique.Comment: arXiv admin note: substantial text overlap with arXiv:1110.497

    Effect of support redox character on catalytic performance in the gas phase hydrogenation of benzaldehyde and nitrobenzene over supported gold

    Get PDF
    The authors are grateful to Dr. N. Perret for her involvement in this work. EPSRC support for free access to the TEM facility at the University of St. Andrews and financial support to Dr. M. Li and Dr. X. Wang through the Overseas Research Students Award Scheme (ORSAS) are also acknowledged.Peer reviewedPostprin

    From the Pr\'ekopa-Leindler inequality to modified logarithmic Sobolev inequality

    Get PDF
    We develop in this paper an improvement of the method given by S. Bobkov and M. Ledoux. Using the Pr\'ekopa-Leindler inequality, we prove a modified logarithmic Sobolev inequality adapted for all measures on \dR^n, with a strictly convex and super-linear potential. This inequality implies modified logarithmic Sobolev inequality for all uniform strictly convex potential as well as the Euclidean logarithmic Sobolev inequality

    Image Encryption Based on Diffusion and Multiple Chaotic Maps

    Full text link
    In the recent world, security is a prime important issue, and encryption is one of the best alternative way to ensure security. More over, there are many image encryption schemes have been proposed, each one of them has its own strength and weakness. This paper presents a new algorithm for the image encryption/decryption scheme. This paper is devoted to provide a secured image encryption technique using multiple chaotic based circular mapping. In this paper, first, a pair of sub keys is given by using chaotic logistic maps. Second, the image is encrypted using logistic map sub key and in its transformation leads to diffusion process. Third, sub keys are generated by four different chaotic maps. Based on the initial conditions, each map may produce various random numbers from various orbits of the maps. Among those random numbers, a particular number and from a particular orbit are selected as a key for the encryption algorithm. Based on the key, a binary sequence is generated to control the encryption algorithm. The input image of 2-D is transformed into a 1- D array by using two different scanning pattern (raster and Zigzag) and then divided into various sub blocks. Then the position permutation and value permutation is applied to each binary matrix based on multiple chaos maps. Finally the receiver uses the same sub keys to decrypt the encrypted images. The salient features of the proposed image encryption method are loss-less, good peak signal-to-noise ratio (PSNR), Symmetric key encryption, less cross correlation, very large number of secret keys, and key-dependent pixel value replacement.Comment: 14 pages,9 figures and 5 tables; http://airccse.org/journal/jnsa11_current.html, 201
    corecore