278 research outputs found

    Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery

    Get PDF
    Background: One of the goals of livestock genomics research is to identify the genetic differences responsible for variation in phenotypic traits, particularly those of economic importance. Characterizing the genetic variation in livestock species is an important step towards linking genes or genomic regions with phenotypes. The completion of the bovine genome sequence and recent advances in DNA sequencing technology allow for in-depth characterization of the genetic variations present in cattle. Here we describe the whole-genome resequencing of two Bos taurus bulls from distinct breeds for the purpose of identifying and annotating novel forms of genetic variation in cattle.Results: The genomes of a Black Angus bull and a Holstein bull were sequenced to 22-fold and 19-fold coverage, respectively, using the ABI SOLiD system. Comparisons of the sequences with the Btau4.0 reference assembly yielded 7 million single nucleotide polymorphisms (SNPs), 24% of which were identified in both animals. Of the total SNPs found in Holstein, Black Angus, and in both animals, 81%, 81%, and 75% respectively are novel. In-depth annotations of the data identified more than 16 thousand distinct non-synonymous SNPs (85% novel) between the two datasets. Alignments between the SNP-altered proteins and orthologues from numerous species indicate that many of the SNPs alter well-conserved amino acids. Several SNPs predicted to create or remove stop codons were also found. A comparison between the sequencing SNPs and genotyping results from the BovineHD high-density genotyping chip indicates a detection rate of 91% for homozygous SNPs and 81% for heterozygous SNPs. The false positive rate is estimated to be about 2% for both the Black Angus and Holstein SNP sets, based on follow-up genotyping of 422 and 427 SNPs, respectively. Comparisons of read depth between the two bulls along the reference assembly identified 790 putative copy-number variations (CNVs). Ten randomly selected CNVs, five genic and five non-genic, were successfully validated using quantitative real-time PCR. The CNVs are enriched for immune system genes and include genes that may contribute to lactation capacity. The majority of the CNVs (69%) were detected as regions with higher abundance in the Holstein bull.Conclusions: Substantial genetic differences exist between the Black Angus and Holstein animals sequenced in this work and the Hereford reference sequence, and some of this variation is predicted to affect evolutionarily conserved amino acids or gene copy number. The deeply annotated SNPs and CNVs identified in this resequencing study can serve as useful genetic tools, and as candidates in searches for phenotype-altering DNA differences

    Identification and Characterization of MicroRNAs in Asiatic Cotton (Gossypium arboreum L.)

    Get PDF
    To date, no miRNAs have been identified in the important diploid cotton species although there are several reports on miRNAs in upland cotton. In this study, we identified 73 miRNAs, belonging to 49 families, from Asiatic cotton using a well-developed comparative genome-based homologue search. Several of the predicted miRNAs were validated using quantitative real time PCR (qRT-PCR). The length of miRNAs varied from 18 to 22 nt with an average of 20 nt. The length of miRNA precursors also varied from 46 to 684 nt with an average of 138 ±120 nt. For a majority of Asiatic cotton miRNAs, there is only one member per family; however, multiple members were identified for miRNA 156, 414, 837, 838, 1044, 1533, 2902, 2868, 5021 and 5142 families. Nucleotides A and U were dominant, accounted for 62.95%, in the Asiatic cotton pre-miRNAs. The Asiatic cotton pre-miRNAs had high negative minimal folding free energy (MFE) and adjusted MFE (AMFE) and high MFE index (MFEI). Many miRNAs identified in Asiatic cotton suggest that miRNAs also play a similar regulatory mechanism in diploid cotton

    Epistasis of Transcriptomes Reveals Synergism between Transcriptional Activators Hnf1α and Hnf4α

    Get PDF
    The transcription of individual genes is determined by combinatorial interactions between DNA–binding transcription factors. The current challenge is to understand how such combinatorial interactions regulate broad genetic programs that underlie cellular functions and disease. The transcription factors Hnf1α and Hnf4α control pancreatic islet β-cell function and growth, and mutations in their genes cause closely related forms of diabetes. We have now exploited genetic epistasis to examine how Hnf1α and Hnf4α functionally interact in pancreatic islets. Expression profiling in islets from either Hnf1a+/− or pancreas-specific Hnf4a mutant mice showed that the two transcription factors regulate a strikingly similar set of genes. We integrated expression and genomic binding studies and show that the shared transcriptional phenotype of these two mutant models is linked to common direct targets, rather than to known effects of Hnf1α on Hnf4a gene transcription. Epistasis analysis with transcriptomes of single- and double-mutant islets revealed that Hnf1α and Hnf4α regulate common targets synergistically. Hnf1α binding in Hnf4a-deficient islets was decreased in selected targets, but remained unaltered in others, thus suggesting that the mechanisms for synergistic regulation are gene-specific. These findings provide an in vivo strategy to study combinatorial gene regulation and reveal how Hnf1α and Hnf4α control a common islet-cell regulatory program that is defective in human monogenic diabetes

    Lymphomas driven by Epstein-Barr virus nuclear antigen-1 (EBNA1) are dependant upon Mdm2

    Get PDF
    Epstein-Barr virus (EBV)-associated Burkitt's lymphoma is characterised by the deregulation of c-Myc expression and a restricted viral gene expression pattern in which the EBV nuclear antigen-1 (EBNA1) is the only viral protein to be consistently expressed. EBNA1 is required for viral genome propagation and segregation during latency. However, it has been much debated whether the protein plays a role in viral-associated tumourigenesis. We show that the lymphomas which arise in EµEBNA1 transgenic mice are unequivocally linked to EBNA1 expression and that both C-Myc and Mdm2 deregulation are central to this process. Tumour cell survival is supported by IL-2 and there is a skew towards CD8-positive T cells in the tumour environment, while the immune check-point protein PD-L1 is upregulated in the tumours. Additionally, several isoforms of Mdm2 are upregulated in the EµEBNA1 tumours, with increased phosphorylation at ser166, an expression pattern not seen in Eµc-Myc transgenic tumours. Concomitantly, E2F1, Xiap, Mta1, C-Fos and Stat1 are upregulated in the tumours. Using four independent inhibitors of Mdm2 we demonstrate that the EµEBNA1 tumour cells are dependant upon Mdm2 for survival (as they are upon c-Myc) and that Mdm2 inhibition is not accompanied by upregulation of p53, instead cell death is linked to loss of E2F1 expression, providing new insight into the underlying tumourigenic mechanism. This opens a new path to combat EBV-associated disease

    Levels and Patterns of Nucleotide Variation in Domestication QTL Regions on Rice Chromosome 3 Suggest Lineage-Specific Selection

    Get PDF
    Oryza sativa or Asian cultivated rice is one of the major cereal grass species domesticated for human food use during the Neolithic. Domestication of this species from the wild grass Oryza rufipogon was accompanied by changes in several traits, including seed shattering, percent seed set, tillering, grain weight, and flowering time. Quantitative trait locus (QTL) mapping has identified three genomic regions in chromosome 3 that appear to be associated with these traits. We would like to study whether these regions show signatures of selection and whether the same genetic basis underlies the domestication of different rice varieties. Fragments of 88 genes spanning these three genomic regions were sequenced from multiple accessions of two major varietal groups in O. sativa—indica and tropical japonica—as well as the ancestral wild rice species O. rufipogon. In tropical japonica, the levels of nucleotide variation in these three QTL regions are significantly lower compared to genome-wide levels, and coalescent simulations based on a complex demographic model of rice domestication indicate that these patterns are consistent with selection. In contrast, there is no significant reduction in nucleotide diversity in the homologous regions in indica rice. These results suggest that there are differences in the genetic and selective basis for domestication between these two Asian rice varietal groups
    • …
    corecore