45 research outputs found

    Morphogenesis of the T4 tail and tail fibers

    Get PDF
    Remarkable progress has been made during the past ten years in elucidating the structure of the bacteriophage T4 tail by a combination of three-dimensional image reconstruction from electron micrographs and X-ray crystallography of the components. Partial and complete structures of nine out of twenty tail structural proteins have been determined by X-ray crystallography and have been fitted into the 3D-reconstituted structure of the "extended" tail. The 3D structure of the "contracted" tail was also determined and interpreted in terms of component proteins. Given the pseudo-atomic tail structures both before and after contraction, it is now possible to understand the gross conformational change of the baseplate in terms of the change in the relative positions of the subunit proteins. These studies have explained how the conformational change of the baseplate and contraction of the tail are related to the tail's host cell recognition and membrane penetration function. On the other hand, the baseplate assembly process has been recently reexamined in detail in a precise system involving recombinant proteins (unlike the earlier studies with phage mutants). These experiments showed that the sequential association of the subunits of the baseplate wedge is based on the induced-fit upon association of each subunit. It was also found that, upon association of gp53 (gene product 53), the penultimate subunit of the wedge, six of the wedge intermediates spontaneously associate to form a baseplate-like structure in the absence of the central hub. Structure determination of the rest of the subunits and intermediate complexes and the assembly of the hub still require further study

    Beyond quantitative and qualitative traits: three telling cases in the life sciences

    Get PDF
    This paper challenges the common assumption that some phenotypic traits are quantitative while others are qualitative. The distinction between these two kinds of traits is widely influential in biological and biomedical research as well as in scientific education and communication. This is probably due to both historical and epistemological reasons. However, the quantitative/qualitative distinction involves a variety of simplifications on the genetic causes of phenotypic variability and on the development of complex traits. Here, I examine three cases from the life sciences that show inconsistencies in the distinction: Mendelian traits (dwarfism and pigmentation in plant and animal models), Mendelian diseases (phenylketonuria), and polygenic mental disorders (schizophrenia). I show that these traits can be framed both quantitatively and qualitatively depending, for instance, on the methods through which they are investigated and on specific epistemic purposes (e.g., clinical diagnosis versus causal explanation). This suggests that the received view of quantitative and qualitative traits has a limited heuristic power—limited to some local contexts or to the specific methodologies adopted. Throughout the paper, I provide directions for framing phenotypes beyond the quantitative/qualitative distinction. I conclude by pointing at the necessity of developing a principled characterisation of what phenotypic traits, in general, are

    Recombination

    No full text
    corecore